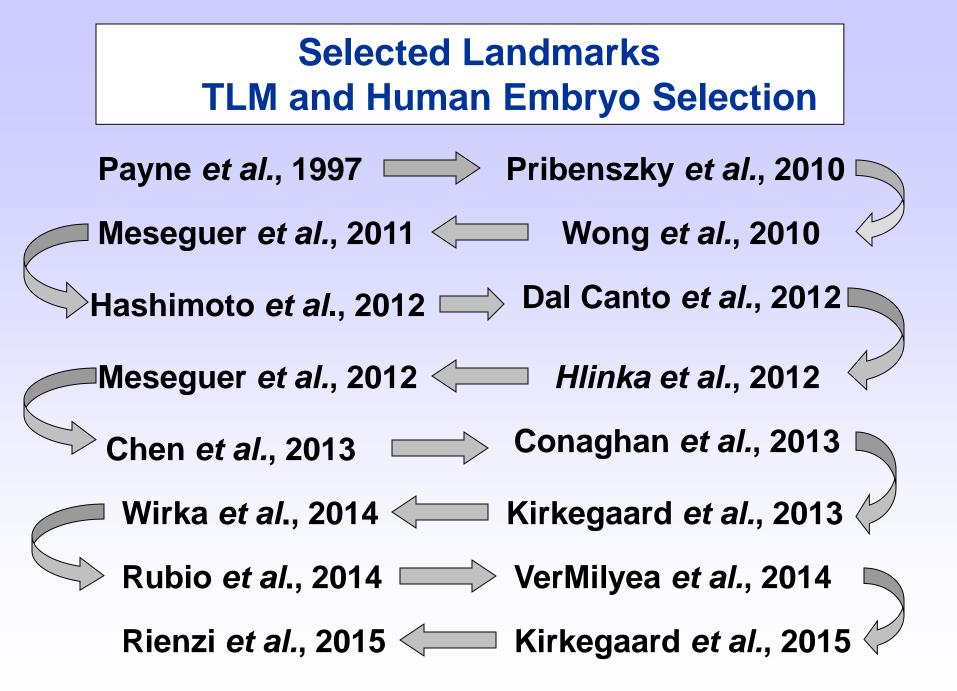
Here's Looking at You, Kid: Time Lapse in the Clinical Embryology Laboratory


Thomas B. Pool, Ph.D., HCLD Fertility Center of San Antonio San Antonio, Texas

Disclosures

Speaker, Auxogyn Symposium, ASRM, 2012

Moderator, Auxogyn Symposium, ASRM, 2013

Participant, MERGE Study sponsored by Auxogyn, Inc. 2014-2015. Speaker, Product Theater, Auxogyn/Fertility Authority PCRS, 2015

Pribenszky et al., Reprod. Biomed. Online 21:533-536, 2010.

 Used PrimoVision system, a compact digital inverted microscope housed in standard incubator

Automated time-lapse monitoring in the regular incubator - components

- 1. The Primo Vision system
 - 1. Microscope
 - 2. Embryo culture dish
 - 3. Controlling unit
 - 4. Software

Pribenszky et al., Reprod. Biomed. Online 21:533-536, 2010.

 Used PrimoVision system, a compact digital inverted microscope housed in standard incubator

 5 zygotes imaged simultaneously using well of well dish, introduced to ART by Gabor Vajta

The Well of the Well (WOW system)

(courtesy of Gabor Vajta)

Pribenszky et al., Reprod. Biomed. Online 21:533-536, 2010.

 Used PrimoVision system, a compact digital inverted microscope housed in standard incubator

 5 zygotes imaged simultaneously using well of well dish, introduced to ART by Gabor Vajta

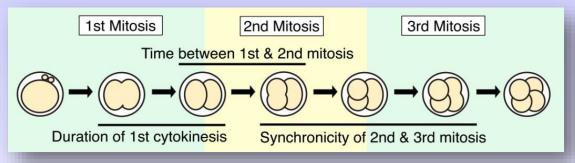
 Single blastocyst selected for transfer – Criteria: no fragmentation, rapid division to 2 and 3 cells, "synchronized cleavage" to 4 cell.

Term delivery, healthy male.

Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Wong *et al.*, 2010.

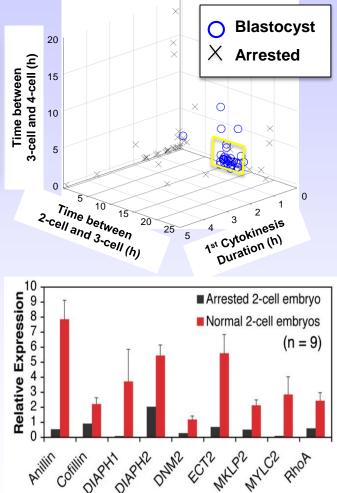
Kinetic data

100 out of 242 thawed human zygotes imaged until blastocyst formation (day 5,6).

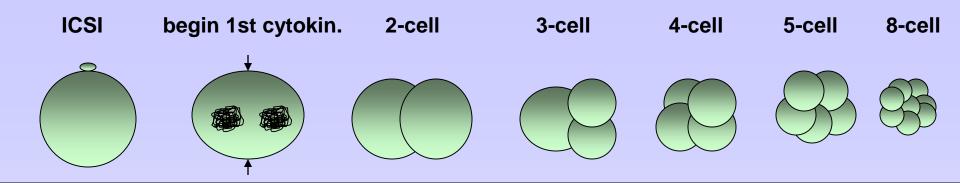

Events predicting blastocyst formation:

- 1. duration of first cytokinesis (14.3+6 min.)
- 2. time between 1st and 2nd mitosis (11.1+2.2 h)
- 3. time between 2nd and 3rd mitosis (1.0+1.6 h)

Conclusion:


Events predicting blastocyst formation occur prior to embryonic genome activation.

Basic research discovery of time-lapse markers



Cell division time-intervals ("P1, P2, P3") predict successful development to the blastocyst stage

- Distinct timing window ^[1]
- Reflect underlying molecular health ^[1]
- Later correlated to implantation and blastocyst quality ^[2-4]
- Most recently examined for aneuploidy ^[5]

¹ Wong et al. *Nature Biotechnology* (2010), ² Meseguer et al. *Human Reprod* (2011), ³ Hashimoto et al. *Fertility* & *Sterility* (2012), ⁴ Cruz et al. *RBM Online* (2012), ⁵ Chavez et al. *Nature Communications* (2012)

Wong et al., 2010 (endpoint: blastocyst formation)

14.3 <u>+</u> 6 min.

11.1 <u>+</u> 2.2 hrs.

1.0 <u>+</u> 1.6 hrs.

The use of morphokinetics as a predictor of embryo implantation. Meseguer *et al.*, 2011.

Patients:285 couples, first cycle with ICSI

Conditions:

Imaging in "Embryoscope", using trigas with image capture every 15' in 5 focal planes over a 64 hour period post ICSI

courtesy of Fertilitech

The use of morphokinetics as a predictor of embryo implantation. Meseguer *et al.*, 2011.

Findings:

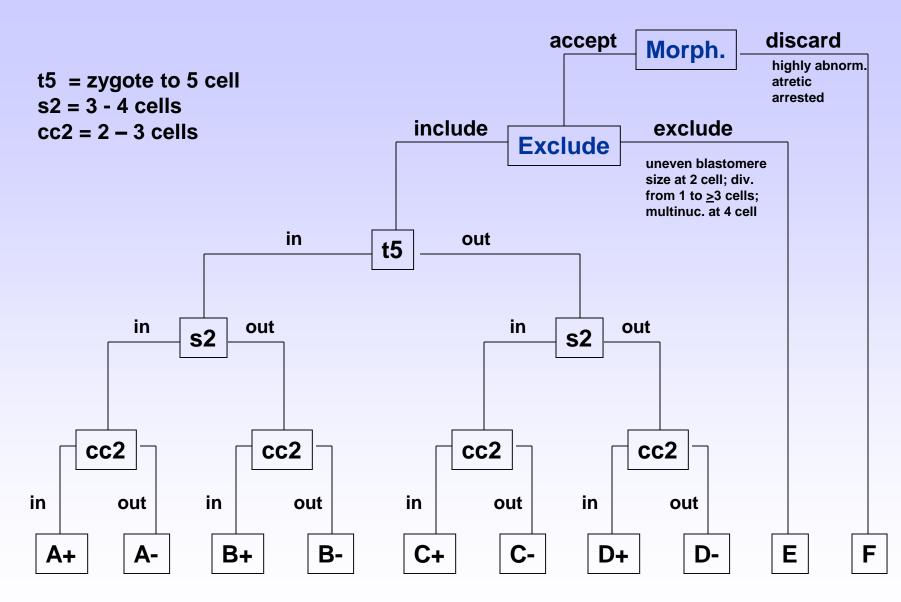
Events significantly correlated with implantation:

- 1. time of division to 5 cells post ICSI (48.8 56.6 h)
- 2. time between division to 2 cells and 3 cells (\leq 11.9 h)
- 3. time between division to 3 cells and 4 cells (\leq 0.76 h)

Events largely precluding implantation:

- 1. multinucleation at 4 cell stage
- 2. uneven blastomere size at 2 cell stage
- 3. abrupt cell division to 3 or more cells.

Morphology versus Morphokinetics


Morphological Assessment of Embryos

All embryos were scored on day 2 (44-48h) and day 3 (64-72h) post ICSI for:

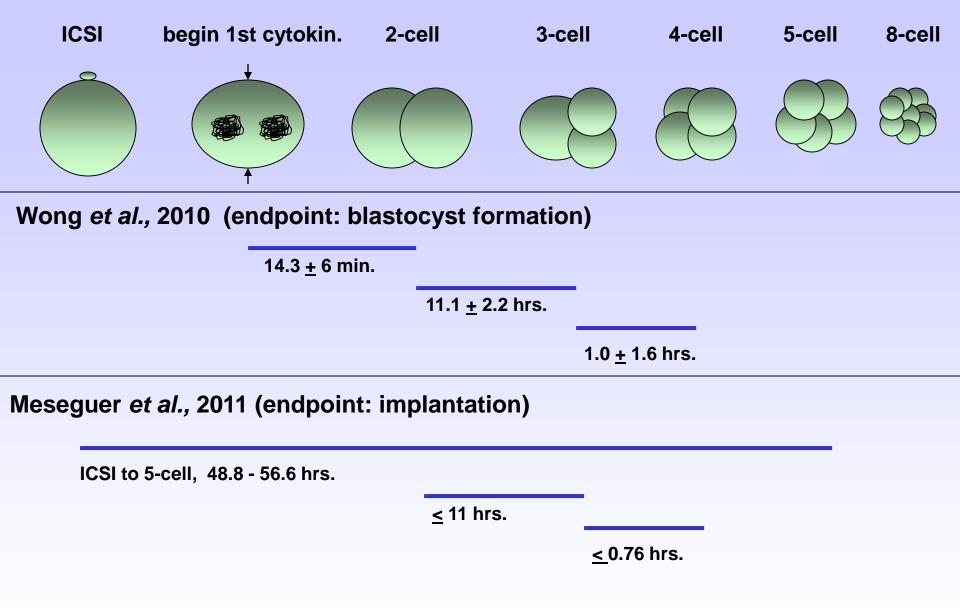
- cellularity (number of blastomeres)
- symmetry/granularity of blastomeres
- type and degree of fragmentation
- multinucleation
- degree of compaction

Five morphological categories defined via criteria of Alikani *et al.*, 2000, with "1" being the best.

Hierarchical Classification Tree

redrawn from Meseguer et al., 2011

Morphokinetic Hierarchy and Implantation Meseguer *et al.*, 2011


Category	imp/total (%)	Category	implantation (%)
A+	19/29 (66)	Α	52
A-	9/25 (36)		
B+	7/24 (29)	В	27
В-	2/25 (24)		
C+ C-	8/32 (25)	С	19
	2/21 (10)		
D+	1/10 (10)	D	14
D-	5/33 (15)		
E	4/48 (8)	E	8

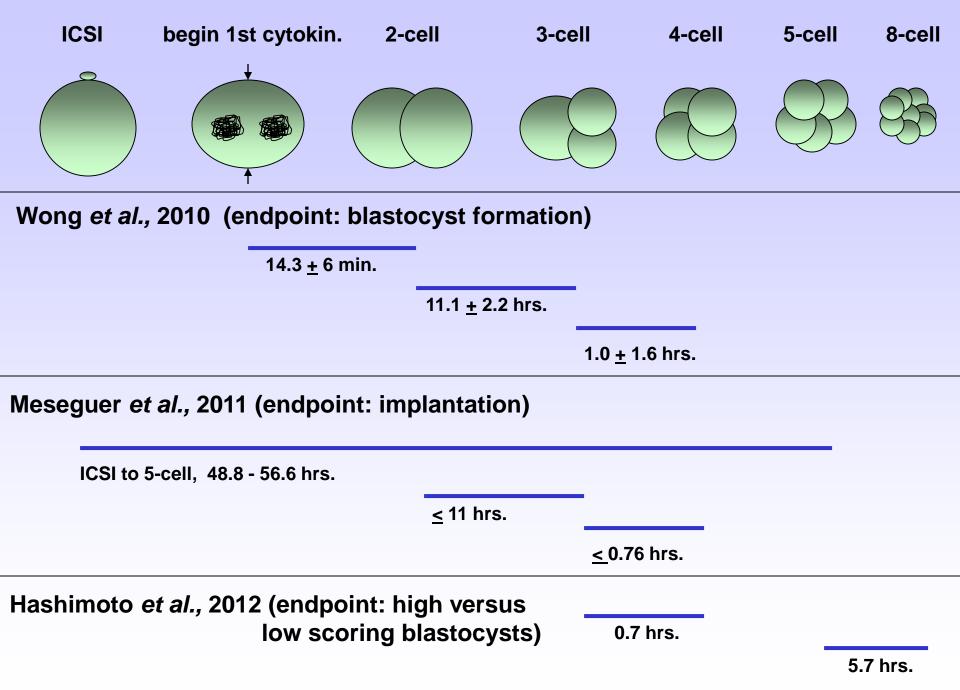
Comparison Between Time-Lapse Categories and Morphological Categories

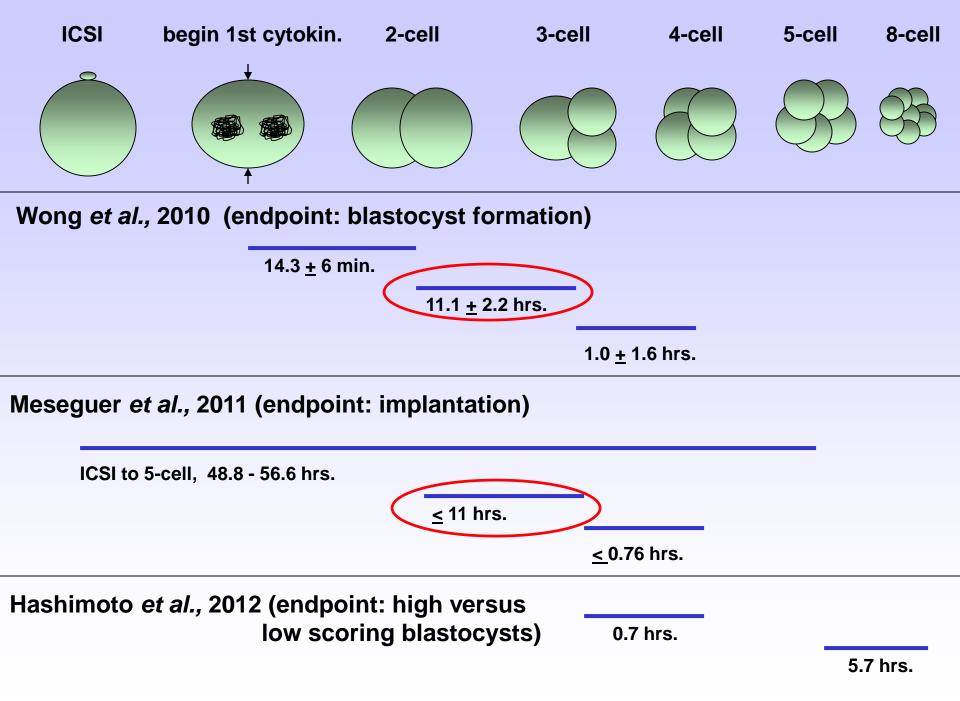
Meseguer et al., 2011

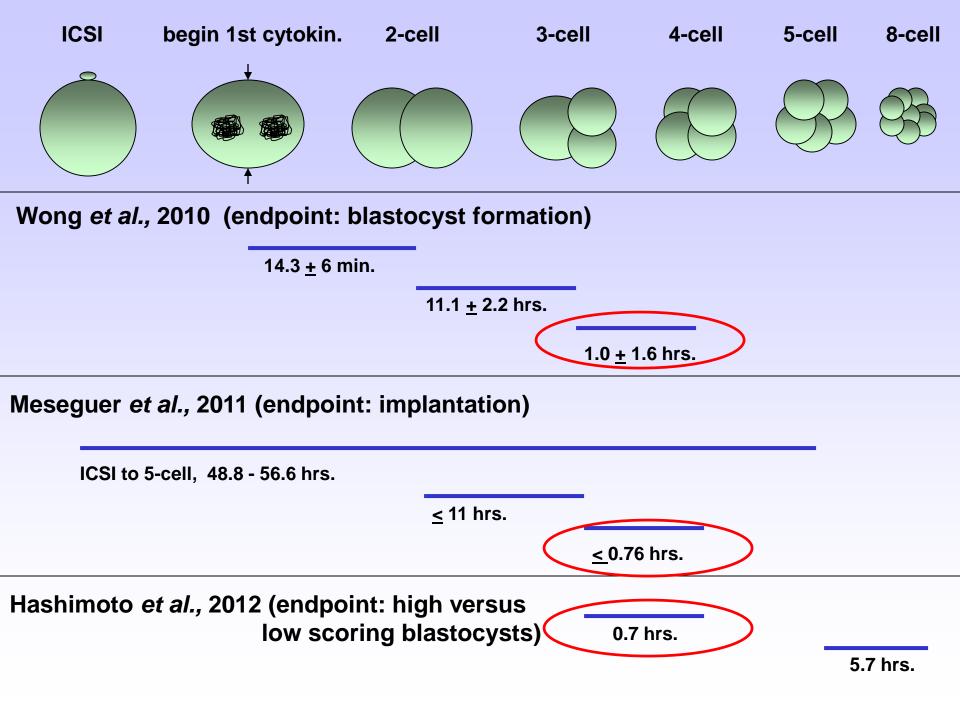
Implantation (%)			
Time-lapse	Imp rate	Morphology	Imp rate
A (n=54)	52	1 (n=35)	43
В	27	2	32
С	19	3	21
D	14	4	13
E	8	5	20

Logistic regression analysis: morphology, AUC = 0.64 time-lapse, AUC = 0.72

What about blastocyst quality?

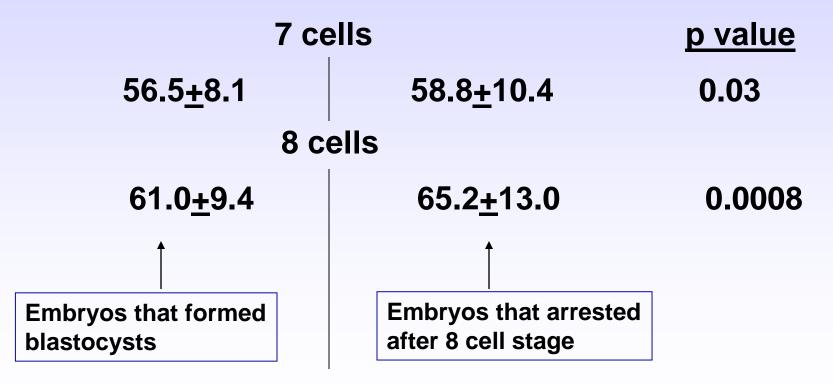

Selection of high-potential embryos – microwells and time-lapse imaging. Hashimoto *et al.* Fertil Steril 97:332-337, 2012.


• 80 cryopreserved human zygotes grown in individual PDMS wells


Imaged for 5 days @ 10' intervals in Nikon
 Biostation CT or Sanyo MCOK-5M imaging incubator

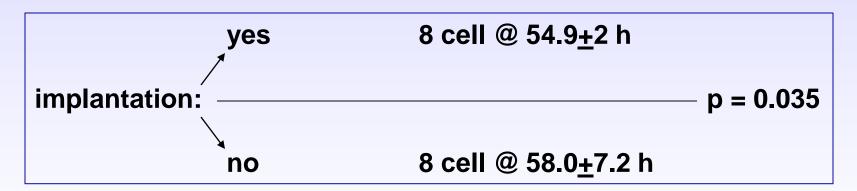
Endpoint: Quality of blastocysts

Significant predictors: time of 3 to 4 cells (0.7 h) 5 to 8 cells (5.7 h)



Morphokinetics: predicting development to blastocyst, expansion and implantation

Dal Canto et al., Reprod. Biomed. Online 25:474-480, 2012.


459 zygotes scored from 2 cell to 8 cell with Embryoscope, 20'.

Morphokinetics: predicting development to blastocyst, expansion and implantation

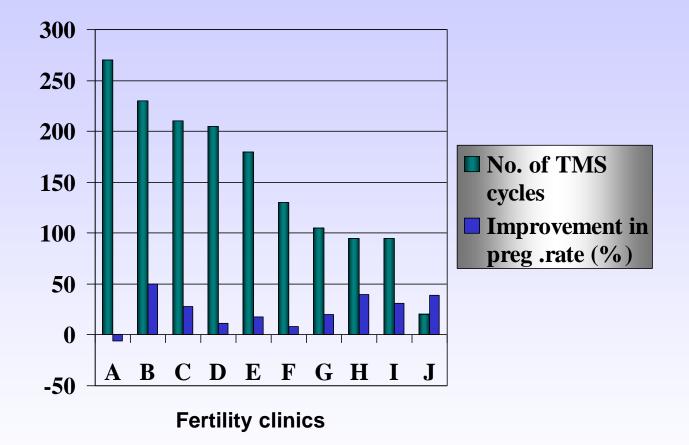
Dal Canto et al., Reprod. Biomed. Online 25:474-480, 2012.

Embryos reaching the blastocyst stage <u>without blastocoel</u> <u>expansion on day 5</u> associated with <u>progressive cleavage delay</u>

<u>Conclusion</u>: Conventional static observations on day 2 (42-44 h) and day 3 (66-68 h) are inappropriate for accurate evaluation Can time-lapse monitoring (TMS) improve reproductive outcome over standard incubation (SI) in a multicenter trial?

Meseguer *et al.,* Fertil Steril 98:1481-1489, 2012

- In the second second
- All ICSI
- 1,390 TMS cycles vs. 5915 SI cycles
- TMS with Embryoscope, 5 images, 15'
- both systems, 5% CO2 in air
- TMS utilized hierarchical classification


Can time-lapse monitoring (TMS) improve reproductive outcome over standard incubation (SI) in a multicenter trial?

Meseguer et al., Fertil Steril 98:1481-1489, 2012

Logistic regression model, incubation method as covariate:

- type of incubation
- type of cycle (autologous, donor)
- day of transfer (d3, d5)
- oocyte source (fresh, vitrified)
- no. mature oocytes injected
- patient age, autologous cycles
- no. prior treatments
- no. embryos transferred
- stimulation protocol
- female etiology
- clinic where cycle was performed

Multicenter trial – Meseguer et al., 2012

Avg. improvement = 20% (weighted for no. of TMS cycles)

Multicenter trial – Meseguer et al., 2012

Conclusions:

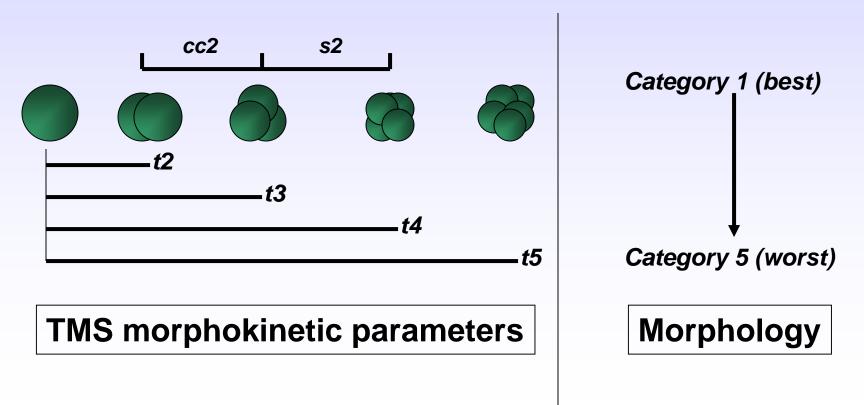
- Use of TMS can improve clinical pregnancy rate by an estimated relative 20% [OR 1.201; p = 0.0043]
- Use of TMS includes less handling of embryos thus reducing the risk of loss or contamination
- TMS offers strictly controlled environment and stable incubation conditions

Is there a universal algorithm for assessing embryonic viability?

Con:

- Fertilization method (ICSI v IVF) determines kinetics if insemination time is the starting point. Cruz et al., 2013.
- Dose of rFSH and [E2] on day of hCG affect embryo kinetics. Munoz et al., 2012.
- Culture technology (medium, pH, O2, etc.)?

Ciray *et al.,* 2012 – medium, yes Basile *et al.,* 2013 – medium, no


Is there a universal algorithm for assessing embryonic viability?

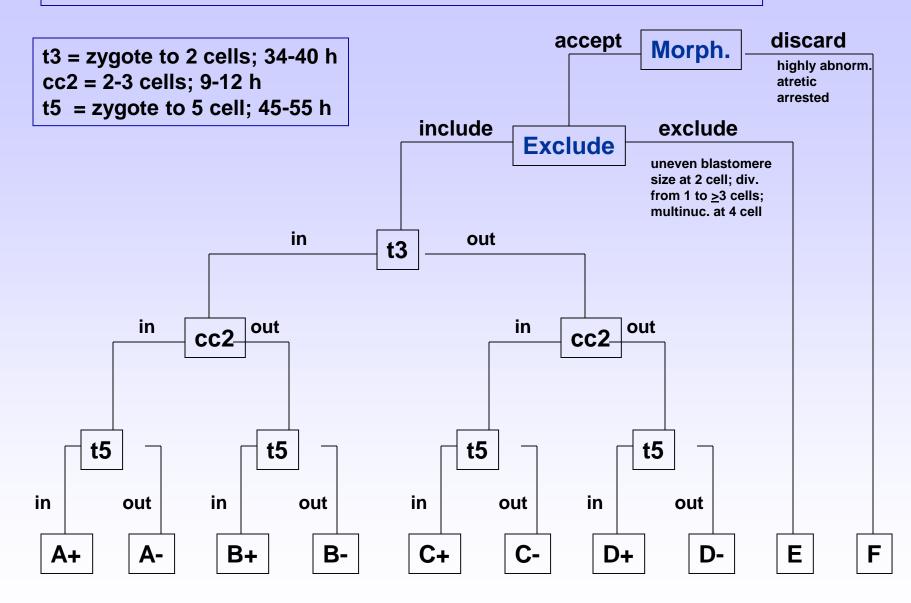
Pro:

- Recurring predictive value of similar kinetic measures between unrelated studies
- Clinical trials with Eeva

Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope Rubio et al., 2014 Fertil Steril 102:1287-94.

Design: 843 couples, all ICSI (gynecologist/statistician blinded) Culture: Cook cleavage medium (days 1-3) Vitrolife CCM (days 3-5); 5.5% CO₂ in air; Incubation volume – S.I. 50 μl; TMS 25 μl

Embryo Development and Fate


	<u>TMS (n=2638)</u>	Control (n=2427)	p value
Fragmentation (%)	7.5 <u>+</u> 0.1	6.9 <u>+</u> 9.4	.006
Optimal embryos day 3 (%)	46.2	43.1	.010
day 5 (%)	20.9	16.6	.001

Not significantly different: No. of blastomeres Symmetry Blast. rate Transferred embryos Cryopreserved embryos

Outcome	TMS	Control	P value
Per retrieval (n)	438	405	
Pregnancy (%)	61.6	56.3	.12
Ongoing preg (%)	51.4	41.7	.005
	445	070	
Per transfer (n)	415	373	
Pregnancy (%)	65.3	61.1	.22
Ongoing preg (%)	54.5	45.3	.01
All preg cycles	271	228	
Early preg loss (%)	16.6	25.8	.01
All transferred emb.	775	699	
implantation rate (%)	44.9	37.1	.02

•Ongoing pregnancy after 12 wks sig. affected by day of transfer and incubation type (TMS versus S.I.)

The New Algorithm for Embryo Selection – Multicentric Study

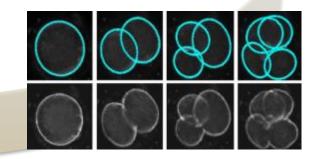
Basile et al., Hum Reprod 30:276-283, 2015

*Phase 1, development; n = 765 cycles Phase 2, test of algorithm; n =885 cycles

Implantation by Embryo Category – Basile et al., 2015

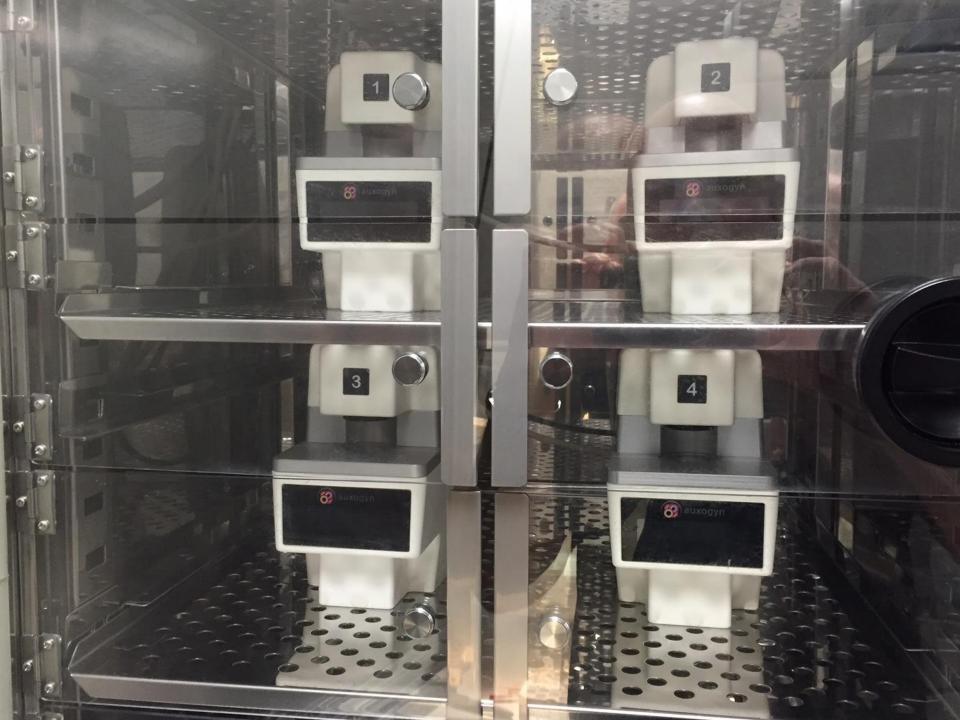
Category	imp/total (%)	Category	implantation (%)
A+	106/333 (32)	Α	32
A-	23/74 (31)		
B+	40/124 (32)	В	28
В-	12/61 (20)		
C+ C-	23/70 (33)	С	26
C-	14/70 (20)		
D+	8/38 (21)	D	20
D-	30/155 (19)		
Е	34/197 (17)	Е	17


The Eeva Test – How it Works

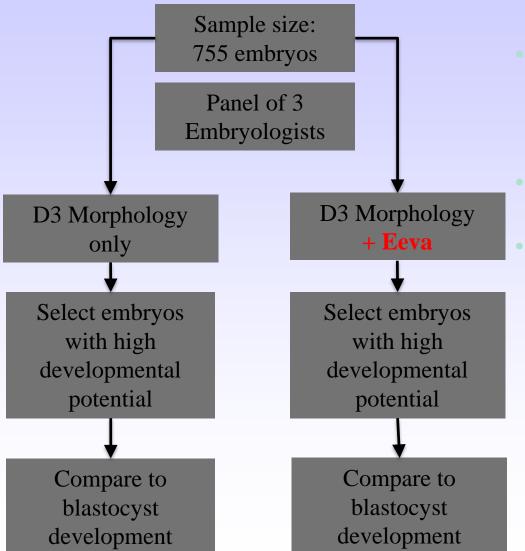


Multi-well Eeva dish provides individual culture within the same media drop

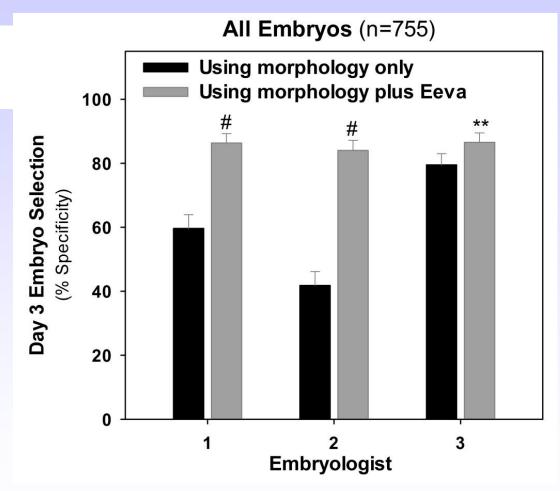
Eeva System using time lapse imaging and intelligent computer vision software collects data inside a standard incubator



Using a proprietary algorithm, images are automatically analyzed


Eeva Test results deliver consistent and objective information to assist embryo selection

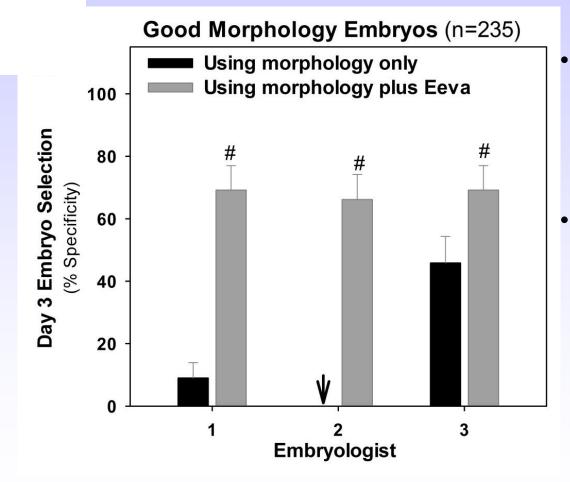
FDA submission pending. Not available for sale in the U.S. CE marked and commercially available in select EU countries.


Eeva Adjunct Study

- **Objective:** Compare two methods of selecting the embryos with high developmental potential
- One week wash-out period was given between arms.
- Results were compared to ground truth of blastocyst formation

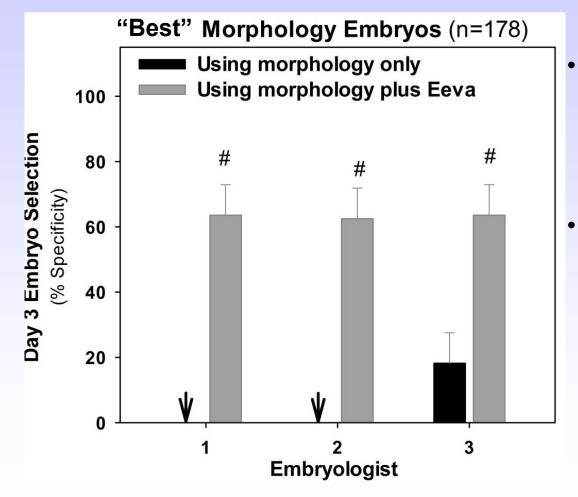
Conaghan et al. Fertility & Sterility (2013)

Eeva Adjunct Study Results



- Specificity measures false positives
- Significantly improved in 3 out of 3 embryologists
- More consistent embryo assessment using D3 morphology + Eeva information

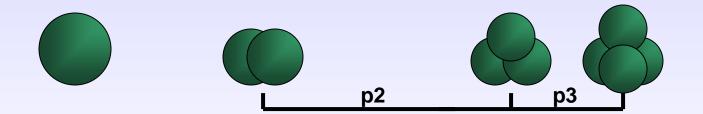
p<0.0001
**p<0.001 relative to Morphology only</pre>


Conaghan et al. Fertility & Sterility (2013)

Eeva Adjunct Study Results

- "Good" morphology:
 - 6-cell and above,
 - <10% fragmentation
 - Perfect symmetry
- Eeva helps discriminatewhich "good-looking"embryos have highprobability to arrest

Eeva Adjunct Study Results



- "Best" morphology:
 - 7-8 cells
 - <10% fragmentation</p>
 - Perfect symmetry
- Eeva helps discriminate which "best-looking" embryos have high probability to arrest

Conaghan et al. Fertility & Sterility (2013)

Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: A blinded, multi-centre study VerMilyea *et al.*, 2014 Reprod BioMed Online 29:729-36.

Study design: multi-center, non-selection of Eeva scores 205 patients; 6 clinics; Eeva was scored but blinded for transfers, day of ET not stated (assume d5).

Eeva	p2	p3
High	9.33 – 11.47 h	0 – 1.73 h
Medium	9.33 – 12.65 h	0 – 4 h

Correlation of Eeva Score and Implantation

		Eeva score	е	
	<u>High</u>	Medium	Low	P-value
Implant. rate	41/111		50/220	
(%)	37		23	.003
Implant. rate	41/111	29/83	21/137	
(%)	37	35	15	
	37	35		NS
	37		15	.0001
		35	15	.0004

Correlation of Eeva Score and Clinical Pregnancy

Transferred	Patients	No. emb trans.	Preg rate
At least:			
one high	105	1.8 <u>+</u> 0.8	51% (54/105)
Only low	100	1.8 <u>+</u> 0.7	39% (39/100)

At least one Eeva high versus only Eeva low, p=0.04

Correlation of Eeva Score and Clinical Pregnancy

Transferred	Patients	No. emb trans.	Preg rate
At least:			
one high	105	1.8 <u>+</u> 0.8	51% (54/105)
one medium	53	1.8 <u>+</u> 0.7	43% (23/53)
Only low	47	1.8 <u>+</u> 0.8	34% (16/46)
Only low	47	1.8 <u>+</u> 0.8	34% (16/46)

At least one Eeva high versus only Eeva low, p=0.02

Patient Enrolled In MERGE Trial

MERGE Study	Prospective (selection study), multi-center, single arm		
Purpose	To record and evaluate the use of traditional morphology grading combined with Eeva in IVF treatment.		
# of clinics	11 clinics in US		
Total patients enrolled	533 patients consented and enrolled		
Patient population	All comers		
Protocol	Embryo selection for fresh transfer is using Eeva Results adjunctive to traditional morphology grading.		
Results	213 Day 3 fresh ET234 Day 5 fresh ET69 cases no fresh ET		
<u>MERGE stands for M</u> ultic <u>E</u> nter <u>R</u> e <u>G</u> istry with <u>E</u> eva			

Fertility Center of San Antonio 2014

Day 3 transfers (no PGS, no donor oocytes):

Age range: 25-45 Clinical pregnancy rate: 138/248 (55.6%) Implantation rate: 197/505 (39%)

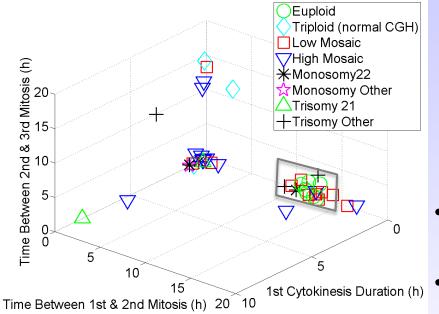
Age < 35 Clinical pregnancy rate: 75/117 (64.1%) Implantation rate: 115/217 (53%)

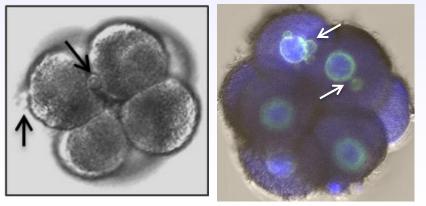
Merge- San Antonio

MEDCE Interim Analysis

MERGE Interim Analysis					
	Day 3 Practice (3 sites)	Day 5 Practice Overall	Day 3 ET San Antonio		
# Patients	106	234	42		
Age	32.3 ± 4.1	34.0 ± 4.7	32.5 ± 4.5		
# 2PN	8.5 ± 4.0	10.5 ± 5.6	8.7 ± 4.3		
# Embryos transferred	2.0 ± 0.5	1.5 ± 0.5	2.0 ± 0.3		
Positive hCG	70 (66%)	158(68%)	32 (76%)		
Clinical Pregnancy	63 (60%)	134 (57%)	28 (67%)		
Implantation Rate	80/215 (37%)	146/349 (42%)	37/83 (44%)		
Multiple Rate	22/63 (35%)	24/134 (19%)	12/28 (43%)		

Fertility Center of San Antonio Effect of Eeva in MERGE Study


Embryos					
transferred	n	+hCG	FHR	Ongoing	
Only Eeva "low"	22	14 (63.6%)	11 (50%)	11 (50%)	
Only Eeva "high"	11	9 (81.8)	11 (81.8)	8 (72.7)	
At least 1 "high"	22	20 (90.9)	18 (81.82)	16 (72.7)	
Eeva and Cryopreservation					
Eeva Trans	<u>s.</u>	Cryo		Total	
Low 58 (1	7%)	33 (1	1.8%)	338	
High 31 (3	7%)	25 (4	7.2%)	84	

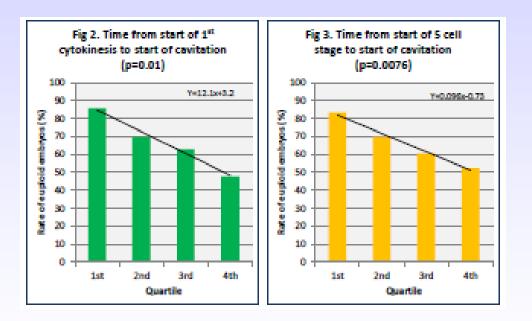

Time-lapse Analysis and Aneuploidy

- Is there are relationship between morphokinetics and embryo aneuploidy?
- Is it possible to develop an algorithm, based upon different kinetic behaviors, that distinguishes euploid from aneuploid embryos?

Cell Division Timing & Cleavage-Stage Aneuploidy

Fragments

Lamin B-1 / DAPI



- Time-lapse imaging to 4-cells and chromosomal analysis by aCGH
- Molecular analysis of chromosome
 localization suggested sequestration in
 fragments
- Dynamic assessment of fragmentation
 via cell tracking algorithms

Time to Cavitation and Blastocyst Aneuploidy

EARLY TIMES TO CAVITATION ARE ASSOCIATED WITH A REDUCED PREVALENCE OF ANEUPLOIDY IN EMBRYOS CULTURED TO THE BLASTOCYST STAGE: A PROSPECTIVE BLINDED MORPHOKINETIC STUDY

Kathleen H. Hong, MD^{1,2}, Eric J. Forman, MD^{1,2}, Andrew Prodoehl, BA¹, Kathleen M. Upham, BS¹, Nathan R. Treff, PhD^{1,2}, Richard T. Scott, Jr., MD, HCLD^{1,2} ¹Reproductive Medicine Associates of New Jersey, ²Rutgers-Robert Wood Johnson Medical School

tCav = time from start of 1st cytokinesis to start of cavitation T5cell to Cav = time from start of 5 cell to start of cavitation 1. Patterns of temporal development through the cleavage stage do not predict blastocyst stage aneuploidy

GERS

Robert Wood Johnson Medical School

2. Two new late stage parameters were correlated with blastocyst aneuploidy risk

> Hong et al. ASRM 2013, Boston, MA Scientific Program Third Prize Poster

No evidence of association between blastocyst aneuploidy and morphokinetic assessment in a selected population of poor-prognosis patients: a longitudinal cohort study Rienzi *et al.* 2015 RBMO 30:57-66.

Study design: longitudinal cohort, 138 patients, 455 blastocysts

Patients: maternal age >36 (n=102); >2 failed IVF (n=16); >2 SAB (n=20) alone or in combination.

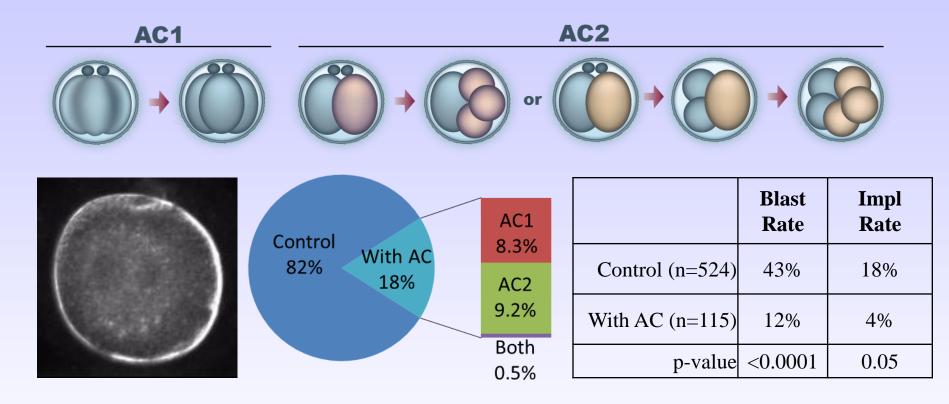
Imaging: EmbryoScope post ICSI; 7 focal planes every 7'

PGS: trophectoderm biopsy of all expanded blastocysts at 120 – 160 hours (5-10 cells); CCS via qPCR

Rienzi et al. 2015 RBMO 30:57-66.

Parameter	Euploid (n=186)	Aneuploid (n=269)	OR
Syngamy	24.06	24.11	0.016
T2	26.61	26.63	0.01
Т3	37.48	37.74	0.02
T4	38.62	39.17	0.01
Т5	51.15	51.83	0.01
T8	59.83	58.46	0.00
CC1	2.50	2.50	-0.055
CC2	11.5	11.64	0.037
S2	0.75	0.75	-0.009
S3	5.91	6.01	-0.003
CC3	13.95	13.66	0.011
CC3/CC2	1.20	1.20	0.025
T5 - T2	25.19	25.27	0.012
Initation of:			
compaction	90.35	91.07	0.004
blastulation	103.77	102.52	-0.004
Complet. blast	117.05	117.32	0.012

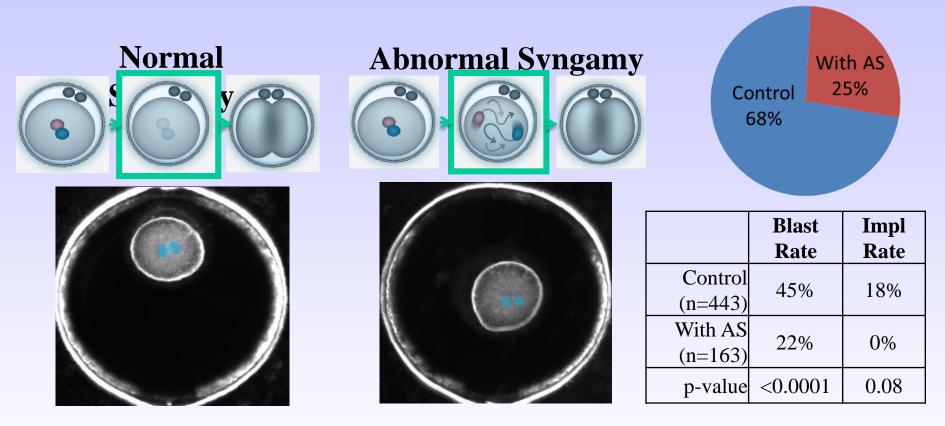
**No significant difference for any parameter.


Time-lapse Analysis and Embryo De-selection

Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development

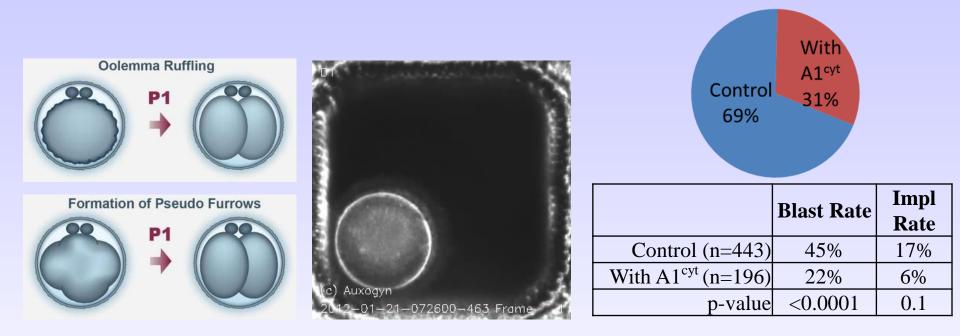
Kelly Athayde Wirka, M.S., Alice A. Chen, Ph.D., Joe Conaghan, Ph.D., Kristen Ivani, Ph.D., Marina Gvakharia, M.D., Ph.D., Barry Behr, Ph.D., Vaishali Suraj, M.S., Lei Tan, Ph.D., and Shehua Shen, M.D.

^a Auxogyn, Menlo Park; ^b Pacific Fertility Center, San Francisco; ^c Reproductive Science Center of the Bay Area, San Ramon; ^d Fertility Physicians of Northern California, Palo Alto Medical Foundation, San Jose; and ^e Stanford Fertility and Reproductive Medicine Center, Palo Alto, California


Abnormal Cleavage

- AC1 and AC2 embryos are often selected for Day 3 transfer (28.6%)
- AC embryos are often good quality (46.9% 6-10 cells, ≤10% frag)
- Morphology is unable to detect AC embryos
- Implantation Rate: 3.7%

Athayde Wirka et al. Fertil & Steril, In Press


Abnormal Syngamy

- AS is associated with poorer developmental potential
- Many AS embryos have good morphology on Day 3 and Day 5 and are selected for transfer or freezing
- AS may be related to centrosomes from abnormal sperm

Athayde Wirka et al. Fertil & Steril, In Press

Abnormal First Cytokinesis (A1^{cyt})

- A1^{cyt} phenotype is associated with poorer developmental potential
- Previously research has correlated 1st cytokinesis timing (P1) to developmental competence
- Combining A1^{cyt} phenotype and P1 timing may more finely discriminate embryos for de-selection

Conclusions

Time-lapse analysis, coupled with morphology, significantly improved implantation and clinical pregnancy in multicenter trials using two time lapse systems and algorithms.

Embryo kinetic behavior is affected by aneuploidy but does not appear to be sufficient to define ploidy status at the individual embryo level.

Time-lapse analysis provides a unique opportunity to de-select embryos that show abnormalities of cleavage, syngamy and/or cytokinesis compared to static evaluation.

Fertility Center of San Antonio

Ginny Ord Veronica Sossamon Katharine Kirsch Justin Hall Amy Galindo Joseph Martin, M.D. Greg Neal, M.D. Matthew Retzloff, M.D