Prevention of genetic disease before pregnancy

Santiago Munné, PhD

Reprogenetics Laboratories

US: Livingston (NJ), Los Angeles (CA), Chicago (IL), Portland (OR), Boca Raton (FL) / **Europe:** Barcelona (Spain), Oxford (UK), Hamburg (Germany) / **Asia:** Kobe (Japan), Macao, Abu Dhabi (UAE) / **Latin America**: Lima (Peru), Buenos Aires (Argentina), Sao Paulo (Brazil), DF (Mexico)

Genetics and infertility

Problem	frequency	Detection in couple	Solution
AMA	50% of cycles	interview	PGS
RPL	1% of fertile couples	interview	PGS
Translocations	9% RPL, 2% MF	karyotype	PGD
Hereditary gene defects	2% of couples	Carrier screen (CarrierMap)	PGD
Genetic susceptibility to infertility	Unk.	Carrier screen (FertilityMap)	Pharmaco- genetics
De novo gene defects	1/100 autistic babies	N/A	PGD with whole gene sequencing

Evolution of PGS: Reprogenetics data

Reprogenetics Laboratories: 39,000 PGD procedures up to 12/2013

Waves of technology

Why PGS?

Most loss of implantation is caused by chromosome abnormalities

Reprogeneti

Reprogenetics data: 96 centers, >3500 cycles, >19,000 blastocysts analyzed by aCGH to 9/2013

The PGS hypothesis - proven

- **50%** of blastocysts are aneuploid,
- Aneuploidy increases with maternal age
- Maternal age is inversely proportional to implantation
- The error rate of PGS with CCS is low (<2%)
- And blastocyst biopsy is **non-detrimental**

Therefore PGS with CCS and blastocyst biopsy:

- Should double Implantation rates
- Should eliminate the Maternal age effect on implantation

QUESTION

Do you think that the PGS hypothesis has now been proved?

YES
NO

PGD v.2 (or CCS)

24 chromosome analysis by arrays

Blastocyst biopsy

Effect of day 3 biopsy: Mastenbroek et al. (2007)

• 20% of cycles undiagnosed and replaced (third arm)

	implantation
Control Biopsied, undiagnosed Biopsied and PGD	14.7% 59% reduction 6.0% 16.8%

- 59% implantation reduction due to biopsy
- PGD vs. Biopsied undiagnosed: 2.8x improvement

...but biopsy is an operator-dependent procedure and its effect may vary

Scott et al. (2013) Fertil Steril, in press Patients randomized to cleavage of blastocyst biopsy. Two best embryos randomized 1 to biopsy and 1 to no biopsy, both replaced. Biopsied embryos fingerprinted and compared with the fetus.

blastocyst biopsy: Advantages

Advantages:

- More DNA: less no results
- Less mosaicism = low error rate
- Reduced impact of embryo biopsy
- Less embryos to process
- Facilitates single embryo transfer
- Frozen cycle: Uterine environment optimized after thaw

Disadvantages:

- Not all embryos reach blastocyst the same day
- 4.5% monozygotic twins (Morin et al. 2013)

Biopsy stage	Embryos undiagnosed	Centers* range
Cleavage	3.2%	1% - 5%
Blastocyst	2.3%	0% - <mark>18</mark> %
	Mos	st experienced Untrained

Gutierrez-Mateo et al. (2011) Fertil Steril and Reprogenetics data on **9049** embryos * Centers with >20 cycles done for that biopsy stage

Is the trophectoderm representative of the ICM?

- ICM and TE were concordant in 97% (31/32) embryos when analyzed by aCGH (^a).
- Blastocysts analyzed by aCGH as abnormal were reanalyzed by FISH and were 97.5% (39/40) abnormal (^b).

(a) Capalbo et al. (2013) in press, (b) Colls et al. (2013) ASRM

Array Comparative Genome Hybridization

46,XX+7-10

- All 24 chromosome aneuploidies and translocations detected.
- Results in <16 hours: allows for day 5 biopsy and 10am day 6 transfer
- Parental DNA **not** required: ad hoc decisions possible.
- ICSI **not** required.

aCGH validation: PBs, Day 3 embryos		Reprogenetics
Approach	Errors	Reason
Cell lines: karyotype and aCGH same passage ^a	2.0%	unk
Day 3: FISH reanalysis of non-replaced embryos ^b	1.8 - 3.0%	mosaics
Day 3: aCGH reanalysis of non-replaced embryos ^c	0.0 - 1.2%	mosaics
PBs: aCGH comparison of PBs and eggs ^d	6.0%	unk
Day 3: aCGH comparison to NGS e	0.0%	

^a BlueGnome unpublished data, ^b Gutierrez-Mateo et al (2011) Fertil Steril, 95:953 and Mir et al. (2011) ASRM, ^c Biricik et al. (2011) ASHG, Montreal, and Reprogenetics unpublished data, ^d Geraedts et al. (2011) Human Reprod, in press, ^e Wells et al. (2013) ASRM

aCGH validation: reanalysis of blastocysts

	Reanalysis method	Confirmed Euploid	Confirmed abnormal	TOTAL
Fragouli et al 2011	FISH, aCGH	23/25	27/27	50/52
Capalbo et al. 2013	FISH	19/20	50/50	69/70
Colls et al. 2013	FISH, aCGH	7/7	39/40	46/47
Wells et al. 2013	Next Gen. Sequencing	23/23	67/67	90/90
Total		96% Sensitivity	99.5% Specificity	1.6% Error rate

Fragouli et al. (2011) Hum. Reprod. 26: 480-90, Colls et al. (2013) ASRM P-168, Capalbo et al. (2013) Hum Reprod, in press, Wells et al. (2013) ASRM O-435 and unpublished data from Reprogenetics

Speed of different techniques

	Biopsy	Reception	Results by
qPCR:	day 5	day 5, 6pm	day 6, am
aCGH:	day 5	day 5, 6pm	day 6, noon
NGS:	day 5	day 5, 6pm	day 6, noon
SNPs:	day 5	day 5, <mark>noon</mark>	day 6, <mark>6pm</mark>

aCGH vs other techniques: Detection differences

	aCGH	SNPs	qPCR	NGS	frequency
69,XXX w/o aneuploidy	no	yes	yes	yes	0.2% ^a
69,XXX with aneuploidy	yes	yes	yes	yes	7.8% ^a
UPD w/o other abnormalities	no	yes	no	yes	>0.01% ^b
Trisomy w/o recombination	yes	unk	yes	yes	3%
Duplications, deletions	yes	yes	no	yes	5%
Translocations	all	some	no	yes	unk
Error rate (day 3-5 biopsy)	2-3% ^c	2-4% ^d	1% ^e	0% ^f	

^a Bisignano, Wells, Harton and Munne (2011) RBO
^b www.ncbi.nlm.nih.gov/omim, ^c Gutierrez-Mateo et al. (2011), ^d Scott et al. (2012), ^e Treff et al. (2012) Fertil Steril 97:819–24. ^f Wells wt al. (2013) ASRM

Chromosome abnormalities detected with array CGH

Euploidy decreases with age but not with cohort size

	% normal embryos						
# of blastocysts	egg donors	<35 years	35-37 years	38-40 years	41-42 years	>42 years	
1-3	58%	61%	51%	39%	22%	13%	
4-6	62%	60%	52%	38%	23%	17%	
7-10	65%	62%	51%	36%	21%	14%	
>10	68%	63%	55%	37%	25%	n/a	

N = 4,747 cycles and 29,803 embryos, up to 12/2013. Ata, Munne et al. (2012) Reprod Biomed Online and unpublished data.

Prognosis depending on age and ovarian response

	% of patients with normal embryos						
# of blastocysts	egg donors	<35 years	35-37 years	38-40 years	41-42 years	>42 years	
1-3	86%	85%	72%	60%	58%	24%	
4-6	95%	97%	95%	88%	69%	54%	
7-10	100%	99%	96%	92%	85%	65%	
>10	100%	100%	98%	98%	92%	83%	

N = 3,571 cycles and 19,356 embryos, up to 8/2013. Ata, Munne et al. (2012) Reprod Biomed Online and unpublished data.

Overall clinical results

1st randomized clinical trial: CGH and frozen transfer

	Cycles cycles	Mat. age	Prev. failed	embryos replaced	implant. (+ sac)
CGH :	45	37.7	2.4	2.0	72%
control :	113	37.1	1.2	2.7	46%

p=0.0003

Schoolcraft et al. (2010) Fertil. Steril. 94:1700

2nd Randomized Clinical Trial: aCGH + fresh transfer, <35 years old

	Control	PGS	
patients	48	55	
age	<35	<35	
replacement	Day 6	Day 6	
replaced	48 (1)	55 (1)	
Pregnancy rate	45.8%	70.9%	P<0.05
Ongoing preg rate	41.7%	69.1%	P<0.05
multiples	0	0	

Yang et al. (2012) Molec Reprod

3rd randomized clinical trial: qPCR + fresh transfer

Good prognosis patients (average 8 blastocysts)

Control replaced on day 5, test biopsied on day 5 and replaced on day 6

	PGD	Control	
age	32.2	32.2	
Ν	72	83	
blastocysts	8	7.9	
Emb replaced	1.9	2.0	
implantation	79.8%	63.2%	P=0.002
Sustained implant	66.4%	47.9%	P=0.03
Delivery rate	84.7%	67.5%	P=0.01

Scott et al., 2013 Fertil Steril.

4th Randomized Clinical Trial: 1 tested vs. 2 untested

	ongoing pregnancy rate		
	1 euploid blastocyst	2 untested blastocyst	
Fresh transfer	65%	70%	NS
Frozen transfer	55%	52%	NS

Forman et al. (2013) Fertil Steril Mean maternal age 35 (patients <43)

Metanalysis

IMPLANTATION RATES IN RCT STUDIES USING PGS v2:

	Control	PGS	
Yang et al. 2012	46%	69%	
Scott et al. 2013	63%	80%	
Forman et al. 2013	40%	58%	
TOTAL	53%	73%	P<0.0

Array CGH with blastocyst biopsy: Unselected compiled results

	total	range / center
Centers doing d5 biopsy:	96	
Cycles included:	3571	11 - 522
Maternal age:	35.4	34.7 - 38.6
Av. blasts biopsied:	5.6	4.5 - 8.4
Av. Embryos replaced	1.1	0.8 - 1.4
Implantation rate	51%	35 - 79%
Pregnancies / cycle	49%	28 - 72%
Pregnancies / transfer	71%	49 - 90%
Ong preg / cycle	45%	26 - 65%
Ong preg / transfer	64%	43 - 86%

Reprogenetics data to 8/2013

Is it worthy to biopsy day 6 blastocysts?

The differences between day 5 biopsy and fresh transfer vs. day 5-6 biopsy and vitrification is that the later includes day 6 biopsies:

- Day-5 morulas were cultured to day-6 and biopsied if reached blastocyst
- SET of blastocysts either biopsied on day 5 or on day 6, thawed transfer

	Day 5 biopsy	Day 6 biopsy	
Implantation	61%	60%	N.S.
Euploidy	56%	42%	P<0.025

Reprogenetics, unpublished

maternal age effect disappears with full chromosomes analysis

aCGH eliminates the negative effect of maternal age on implantation

* SART 2011

** Harton, Munné et al. (2013) Fertil Steril. And unpublished data to 8/2013. N >800 blast biopsies

Miscarriage rate after blastocyst biopsy

Compared to SART:

Compared to other studies:

	Preg nan cies	age	SAB
This study	307	34.9	7.5%
Scott et al. 2013	72	32.2	8.3%

*SART, ** Harton et al. (2013) Fertil Steril, and unpublished data
Ongoing pregnancy rate does not change with maternal age but ...

Harton, Grifo, Munne, Wells et al. (2013) Fertil Steril, and unpublished data. N >800 cycles of blast biopsy with follow up, up to 8/2013. ... Cycles with no euploid embryos do increase with maternal age ...

Harton, Grifo, Munne, Wells et al. (2013) Fertil Steril, and unpublished data. N >800 cycles of blast biopsy with follow up, up to 8/2013.

... resulting in a decrease in pregnancy rate per cycle

Harton, Grifo, Munne, Wells et al. (2013) Fertil Steril, and unpublished data. N >800 cycles of blast biopsy with follow up, up to 8/2013. *p<0.001

Maternal age effect and aCGH: conclusions

- Euploid embryos implant at the same high rate irrespective of maternal age
- However with maternal age there are more cycles without euploid embryos
- Therefore pregnancy rates / transfer are independent of maternal age but pregnancy rates per cycle still decrease with age

QUESTION

Do you think that the PGS hypothesis has now been proved?

YES
 NO

To replace 1 or 2 euploid blastocysts?

- Grade of transferred embryo has been correlated to embryo cohort size
- -The presence of supernumerary embryos is a possible indirect marker for embryo quality
- –ASRM acknowledges surplus embryos as being indicative of "good prognosis"

DEVREKER, *et al.* 1999. Selection of good embryos for transfer depends on embryo cohort size: implications for the 'mild ovarian stimulation debate'. *Hum Reprod,* 14, 3002-08. STEINBERG, *et al.* 2013. Elective single embryo transfer trends and predictors of a good perinatal outcome – United States, 1999 to 2010. *Fertil Steril*; 99, 1937-43. Practice Committee of Society for Assisted Reproductive Technologies. 2013. Criteria for number of embryos to transfer: a committee opinion. *Fertil Steril,* 99, 44-46.

1 vs. 2 euploid blastocysts replaced: Effect on pregnancy and multiple rates

	ongoing pro		
	1 euploid		
	blastocyst	blastocyst	
Fresh transfer	65%	70%	NS
Frozen transfer	55%	52%	NS

Average of 3.2 euploid balstocysts

Forman et al. (2013) Fertil Steril

No. Euploid Embryos	CPR	
1	23/55 (41.8%)	
2	13/27 (48.1%)	
3	9/19 (47.4%)	
4	16/21 (76.2%)	p < 0.01
5	8/11 (72.7%)	
6	6/8 (75.0%)	
>7	11/15 (78.6%)	

S. Morin, K. Melzer, J. Grifo, P. Colls, Z. Zheng, S. Munné (2014) JARG

1 vs. 2 euploid blastocysts replaced: Effect on pregnancy and multiple rates

#	#				
euploid	replaced	preg / transfer		multiples	
1-3	1	42% (47/111)	P<0.01	0% (0/111)	p<0.001
1-3	2	65% (37/57)		38% (14/37)	
4 or					
more	1	75% (41/55)	NC	10% (4/41)	n<0 001
4 or			IN. S .		h<0.001
more	2	78% (58/74)		52% (30/58)	

S. Morin, K. Melzer, J. Grifo, P. Colls, Z. Zheng, S. Munné (2014) JARG

EMBRYO BANKING

Embryo banking for low responders or bad prognosis patients

	% of patients with normal embryos					
# of blastocysts	egg donors	<35 years	35-37 years	38-40 years	41-42 years	>42 years
1-3	86%	85%	72 %	60%	58%	24%
4-6	95%	97%	95%	88%	69%	54%
7-10	100%	99%	96%	92 %	85%	65%
>7-10	100%	100%	98%	98%	92%	83%

N = 3,571 cycles and 19,356 embryos, up to 8/2013. Ata, Munne et al. (2012) Reprod Biomed Online and unpublished data.

Embryo banking aneuploidy rates Remain constant

	1 st cycle	2 nd cycle	3 rd cycle	Total
Euploidy rate	29%	29%	27%	28%
# euploid blastocysts	0.7	0.9	0.7	2.2

Reprogenetics data, unpublished >300 cycles of embryo banking, average age 39.9

Example: 41 years old

Without PGD:

- Risk of patient drop off
- Longer time to pregnancy
- Risk of miscarriage

Example: 41 years old

Embryo banking, one PGD at the end:

- Less time to pregnancy
- No risk of patient dropping off
- Less cost of PGD
- More cost of freezing

- Less patient "fatigue": less drop out from cycle to cycle.
- Cheaper PGD: One fee per package of IVF cycles
- Facilitates "guaranteed baby" plans

PGD FOR RECURRENT PREGNANCY LOSS (RPL)

Background of RPL

- Defined as 3 or more lost pregnancies
- Occurs in 1% of fertile population
- Attributed to anatomic, endocrine,

immunological or genetic problems but ...

...>50% of RPL cases are UNEXPLAINED

All controlled PGD studies on idiopathic RPL show a decrease in miscarriages

Idiopathic RPL :

- Werlin L, et al. (2003) Preimplantation genetic diagnosis (PGD) as both a therapeutic and diagnostic tool in assisted reproductive technology. Fertil Steril, 80:467
- Munné et al. (2005) Preimplantation genetic diagnosis reduces pregnancy loss in women 35 and older with a history of recurrent miscarriages. Fertil Steril 84:331
- Garrisi et al. (2009) Effect of infertility, maternal age, and number of previous miscarriages on the outcome of preimplantation genetic diagnosis for idiopathic recurrent pregnancy loss. Fertil. Steril 92: 288
- Rubio et al. (2009) Prognosis factors for Preimplantation Genetic Screening in repeated pregnancy loss. Reprod Biomed Online
- Hodes-Wertz et al. (2012) Idiopathic recurrent miscarriage is caused mostly by aneuploid embryos. Fertil Steril. 98(3):675-80

Reduction in miscarriages in RPL patients after PGD-FISH

Munné et al. 2005 N=122 procedures of PGD of couples with >2 previous loses

Reduction in miscarriages in RPL patients after PGD-FISH

PGD results according to fertility:

method	cycles	% loss	% loss		%
conceptior	I	expected	after F	PGD p	to term
IVF	115	35%	14%	p<0.01	34%
natural	124	41%	15%	p<0.005	37%

Average maternal age: 37.5 Garrisi et al. (2009)

Results of PGD by aCGH for RPL: age effect

maternal age	preg. cycles	% loss expected	% loss after PGD	
<35	27	26.3%	3.7%	p<0.001
≥35 Total	59 89	36.7%	8.5% 7.0%	p<0.001
ΤΟταί	03	JJ.J/0	7.070	μ<0.001

Grifo et al. (ASRM 2011), and Grifo et al. (submitted)

Results of PGD by aCGH for RPL: biopsy stage effect

day biopsy	preg. cycles	% loss expected	% loss after PGD	
Day 3	59	36%	9%	p<0.001
Day 5	40	42%	3%	p<0.001
Total	99	38%	6%	p<0.001

Hodes-Wertz et al. (2012) Fert Ster

Results of PGD by aCGH for RPL: 2 vs 3 or more loses

Hodes-Wertz et al. (2012) Fert Ster

Multiple pregnancies with euploid and aneuploid fetuses

Real case: 35 years old, triplet pregnancy miscarriage

POC analysis:

PGD for translocations and 24 chromosome abnormalities

All PGD studies on RPL for translocations show a decrease in miscarriages

RPL due to translocations:

- Munné et al (1998). Spontaneous abortions are reduced after pre-conception diagnosis of translocations. J Assisted Reprod Genet 290:
- Munné S et al. (2000) Outcome of Preimplantation Genetic Diagnosis of translocations. Fertil Steril. 73:1209
- Verlinsky et al. (2005) Preimplantation testing for chromosomal disorders improves reproductive outcome of poor prognosis patients. Reprod Biomed Online 11:219

Munné S (2006) Preimplantation genetic diagnosis for translocations. Hum Reprod 21: 839

- Otani et al.(2006) Preimplantation genetic diagnosis significantly improves the pregnancy outcome of translocation carriers with a history of recurrent miscarriage and failing to produce a live birth. Reprod Biomed Online 13: 879
- Fischer J, Colls P, Escudero T, Munné S (2010) Preimplantation Genetic Diagnosis (PGD) improves pregnancy outcome for translocation carriers with a history of recurrent losses. Fertil Steril, In press

aCGH for translocations and 24 chromosome aneuploidy

Patient: 46,XX,t(3;11)(q22.2;q23.3)

Validation of aCGH for Translocations + Aneuploidy

- 0%-2% error rate with aCGH ^(a,b)
- All 931 translocations previously studied at Reprogenetics by FISH can be identified by aCGH ^(a)

a: Colls et al. (2012) RBO, b: Fiorentino et al. (2011) Human Reprod

PGD for gene defects

PGD for gene disorders

We can do PGD for any disease with known mutation

Disease tested: Acetil Co Oxidase type I defficiency, Adrenoleucodistrophy, Alpha-thalassemia, Alport syndrome, Autosomal Dominant Polycystic Kidney Disease (ADPKD), Autosomal Recesive Polycystic Kidney Disease (ARPKD), Beta-thalassemia, Branchio-Oto-Renal syndrome (BOR), BRCA1 breast cancer predisposition, BRCA2 breast cancer predisposition, CanavanCharcot-Marie-Tooth type IA (CMT1a), Choroideremia, Congenital adrenal hyperplasia (CAH), Congenital neutropenia, Connexin 26 hearing loss, Cystic fibrosis, Duchenne/Becker Muscular Dystrophy (DMD), Ectrodactyly, Ectodermal dysplasia, and Cleft lip/palate syndrome (EEC1), Fabry Disease, Familial adenomatous poliposis coli (FAP), Familial dysautonomia, Familial intrahepatic cholestasis 2, Fanconi anemia, Fragile site mental retardation, Gangliosidosis type 1 (GM1), Gaucher disease, Glomuvenous malformations (GVM), Glycogen-storage disease type I (GSD1), Glycosylation type 1C, Hemoglobin SC disease, Hemophilia A, Hemophilia B, Hereditary nonpolyposis colon cancer (HNPCC), Hereditary pancreatitis, HLA matching Huntington disease, Hurler syndrome, Hypophosphatasia, Incontinential pigmenti, Krabbe disease (Globoid cell leukodystrophy), Long QT syndrome, Marfan syndrome, Meckle gruber, Metachromatic leukodystrophy (MLD), Methylmalonic aciduria cblC type (MMACHC), Myotonic Dystrophy 1, Myotubular myopathy, Neurofibromatosis 1, Neurofibromatosis 2, Niemann-Pick Disease, Noonan syndrome, Oculocutaneous albinism 1 (OCA1), Ornithine carbamoyltransferase deficiency (OTC), Osteogenesis Imperfecta 1, Rapp Hodgkin ectodermal dysplasia, Retinitis pigmentosa, Retinoblastoma, Sickle Cell Anemia, Smith-Lemli-Opitz syndrome (SLOS), Spinal bulbar muscular atrophy (SBMA), Spinal Muscular Atrophy Type 1 (SMA1), Tay Sachs, Tuberous sclerosis 1 (TSC1), Tuberous sclerosis 2 (TSC2), Von Hippel-Lindau Syndrome (vHL), X-linked dominant Charcot-Marie-Tooth (CMTX), etc..... (see review Gutierrez et al. (2008))

Day 3 vs. day 5 biopsy for PGD Of gene defects

	Day 3	Day 5	
Total embryos	2634	797	
No Results	12.1%	5.3%	<0.0001
ADO rate	9.8%	1%	<0.0001

Prates et al. (2013) Fertil Steril, ASRM

aCGH and Single Gene Disorders: Results

Prates et al. (2013) ASRM

Improved pregnancy results

 Test type
 Av age
 Pregnancy rate

 SGD
 31.6
 54% (14/26)

 SGD + CCS
 32.3
 86% (12/14)

p<0.05

Reducing work-up time for PGD of single gene disorders - Karyomapping

Thousands of polymorphisms on each chromosomes Each chromosome (region) has a unique DNA fingerprint

PGD v3: Next Generation Sequencing
The \$1000 genome is here

* Not including equipment, labor, overhead, analysis, etc

	PCR	PCR + aCGH	SNP arrays*	Next Gen Sequencing
Detects aneuploidy	no	yes	yes	yes
Detects gene defects	yes	yes	yes	yes
Detects mitotic errors	no	yes	no	yes
>2 month of Preparation	yes	yes	no	no
Requires affected proband	no	no	yes	no
# genomes / run	0	0	0	1 *

* Karyomapping using BlueGnome** with NextSeq

Next Generation Sequencing (NGS)

Slide adapted from D. Wells

PGS: Not all regions amplify equally

NGS analysis of amplified DNA from single cells:

Slide adapted from D. Wells

Platforms used for PGS

Ion torrent (ThermoFisher):

- PGM
- Proton

Illumina:

- MiSeq
- NextSeq
- HiSeq

Complete genomics (BGI)

* using NextSeq, x30 coverage, 120 Gb

Reprogeneti

Barcoding

However, price per sample can be competitive using barcodes

Slide adapted from D. Wells

Barcoding: More samples, less sequence

	samples / run	genome coverage	depth of coverage
Genome	1	100%	x 30
PGS *	16-96	≤ 10%	x1 to x3

Wells, Kaur, Rico, Grifo, Anderson, Sherlock, Taylor, Munne (2013) ESHRE, Yin et al (2013) Biol Reprod 88, 69

* Output: MiSeq = PGM << NextSeq

PGS with NGS: Method

- Whole Genome Amplification of Sample
- Library preparation:
 - Fragment DNA
 - Ligate adapters and barcodes (≥16)
- Sequence

D Wells, K Kaur, A Rico, J Grifo, S Anderson, J Sherlock, JC Taylor, S Munne (2013) ESHRE

78 blastocysts previously diagnosed by aCGH were reanalyzed by NGS in a blinded experiment.

21/21 euploid55/56 aneuploid1 polyploid

1.3% discordance with aCGH, polyploidy detected.

Allen Kung et al. (2014) ESHRE

Example

Adapted from G.Harton, platform: MiSeq

Trisomy 21, male (47,XY + 21)

Adapted from G.Harton, platform: MiSeq

Example

Monosomy 2, male (45,XY -2) And mosaic for 11?

Adapted from G.Harton, platform: MiSeq

Example

49,XY +3 +7 +12 +21 -22

By Reprogenetics, using ion torrent PGM

First baby born from NGS

First NGS baby: David Levy

A collaboration of Reprogenetics-US, Reprogenetics-UK (Dagan Wells) and Main Line Fertility (Dr. Glassner)

Conclusions

Conclusions

- Euploid embryos implant at the same high rate irrespective of maternal age
- However with maternal age there are more cycles without euploid embryos
- Therefore pregnancy rates per transfer are independent of maternal age but pregnancy rates per cycle still decrease with age

- Arrays are fully validated and combined with Blastocyst biopsy provide a significant improvement in ongoing pregnancy rates.
- Arrays alone or in combination with karyomapping can screen for aneuploidy and gene defects simultaneously.
- Next generation sequencing will allow further information to be detected once prices decrease.

Year: 2013

Issue: Vol 100 | No. 3 | September 2013 | Pages 593-896

VIEWS AND REVIEWS

Introduction: Preimplantation genetic screening is alive and very well

David R. Meldrum, M.D.

Reproductive Partners Medical Group, Redondo Beach, California

With 24-chromosome PGS, the rate of miscarriage is running only at <10%, a remarkable finding. marked decrease in multiple pregnancies, without loss of pregnancy potential.

Reprogenetics

Scientists

Jacques Cohen, PhD (US) Santiago Munne, PhD (US) Dagan Wells, PhD (UK) Renata Prates (US) Samer Alfarawati (UK) Souraya Jaroudi (UAE) Tomas Escudero (US) Mireia Sandalinas, PhD (Spain) Luis Guzman, PhD (Peru) J. Horcajadas, PhD (Latin Am.) M. Konstantinidis, PhD (US) N'Neka Goodall (US) Allen Kung (US) Lia Ribustello (US)

Lab & Medical Directors

Pere Colls, PhD (US) Carles Gimenez, PhD (Spain) Elpida Fragouli, PhD (UK) Karsten Held, MD (Germany) Tetsuo Otani, MD (Japan) Muriel Roche, PhD (Japan) Braulio Peramo, MD (UAE) Ahmed Yesilyurt, MD (Turkey) Xuezhong Zeng, MD (China) Francisco Rocha (Mexico) Embryologists Kelly Ketterson Catherine Welch

Tim Schimmel

Genetic Councilors Jill Fischer Amy Jordan Erin Mills G. Manassero, MD

munne@reprogenetics.com www.reprogenetics.com