VITRIFICATION

Search for a Safe Least Toxic Vitrification Solution: VS14?

Jaffar Ali, PhD IVF Laboratory & Reprod Res Laboratories Department of Obstet & Gynaecol University of Malaya Medical Center University of Malaya Kuala Lumpur Malaysia

Email: jaffarali@um.edu.my

Vitrified object

PROLOGUE

Declaration:

I have no financial interest in the VS14 method of vitrification

Appreciation:

- College of Reproductive Biology
- Dr Bill Boone
- The Scientific Committee
- Travel grant from LabIVF
- My employers for granting conference leave

Pardon:

 For the insults I am about to hurl against the English Language

Work on Vitrification Late 1980' to early 1990's

Begining early 1990's vitrification began to show promise as an efficient method of cryopreservation and as a potential replacement for controlled rate freezing

Vitrification

Parvus error in principio magnus est in fine' Aristotle's reiteration of Plato's warning

"A small mistake in the beginning is large in the end".

- 1980-early 1990's Vitrification research appeared headed in right direction
- Then all of sudden vitrification research reached a crossroad, then headed down a path that was un-thinkable
- Resulting in the application of non-aseptic cryo techniques in healthcare.
- Some jumped on to the bandwagonappliéd non-aseptic technique in healthcare
- For more than 10yrs transplantable human tissues exposed to the elements (embryos, oocytes, etc)
- Not GLP/GCP Matter of grave concern
- Now many retracting

Vitrification in mid 1990's Go right for closed Go left for open

See

1.Riha et al. Zivoc Vir 1991;36:113–120, Cited In: Vajta G, Kuwayama M. Theriogenology 65:236-244 (2006). 2.Martino et al. Biol Reprod 54:1059-1069 (1996) 3. Vajta et al. Cryo-Lett 18:191-195 (1997) 4. Lane et al., Fertil Steril 72:1073-1078 (1999) 5. Lane et al., Nature Biotechnol 17(12): 1234-1236 (1999) 6. Vajta and Kuwayama. Theriogenology 65:236-244 (2006)

It is possible to get excellent results with simple, safe, closed (aseptic) methods of vitrification using the 0.25ml straw

No reason why we have to go down the path of non-asepsis



See :

Kasai, M., Komi, J.H., Takakamo, A. *et al.* (1990). *J Reprod. Fertil.*, **89**, 91–97. Ali J. <u>PhD Thesis</u> 1992 Australian National University, Canberra. Ali J, Shelton JN. <u>J Reprod Fertil</u> 1993c; 99:65–70. Ali J, Shelton JN. <u>J Repro. Fertil</u> 1993b; 98:459–465.

Vitrification Hazardous


- World Congress on Human
 Reproduction, Tokyo, Japan, Oct 1987
- Vitrification attempted DMSO Trounson
- Observation: Teratogenic in mouse
- Photographic evidence proved the point
- Inference: Vitrification hazardous
- Challenge to identify/develop a safe VS

Pioneered human embryo cryopreservation Trounson A, Mohr L. *Nature.* 1983;305(5936):707–709

Work on Vitrification Late <u>1980' to early 1990's</u>

- Progress in vitrification hampered although first described in 1937 (Luyet)
- **• TOXICITY** main concern
- TO VITRIFY A SOLN HIGH SOLUTE CONC. ~40V/V
- High solute concentration of 40% in VS is usually TOXIC
- Rall and Fahy, 1986 used Acetamide (toxic)forced to use low temp (cold cryoprotectant solutions) to avoid toxicity

Selection of vitrification solution

- It must vitrify when cooled by plunging into liquid nitrogen
- It must not devitrify during warming
- or fracture on cooling or warming
- It must be non-toxic to embryos.

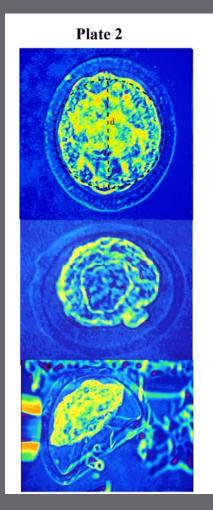
[Toxicity is temperature dependent; cryoprotectant must not be toxic at the temperature at which embryos and media are held during the stages of cryopreservation].

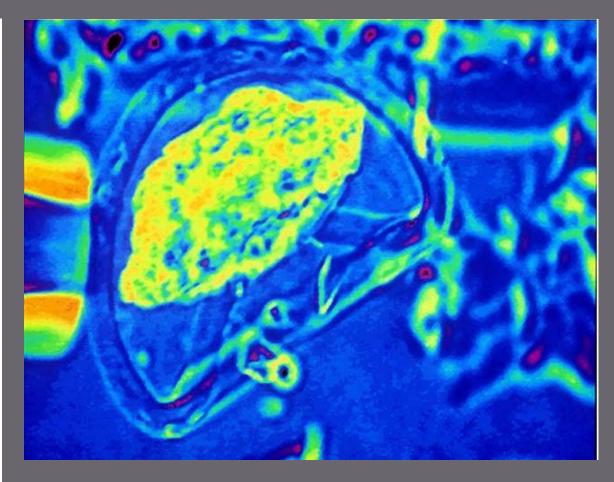
Factors affecting vitrification

Solute concentration Cell dehydration, degree of Volume of vehicle Cooling rate & warming rate Others

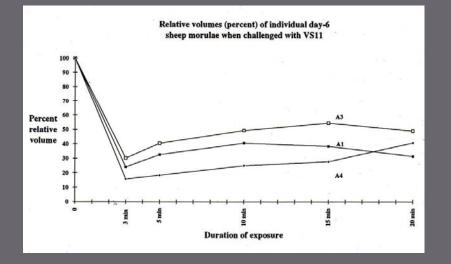
1. Solute concentration

for vitrification to occur in a 0.25ml straw

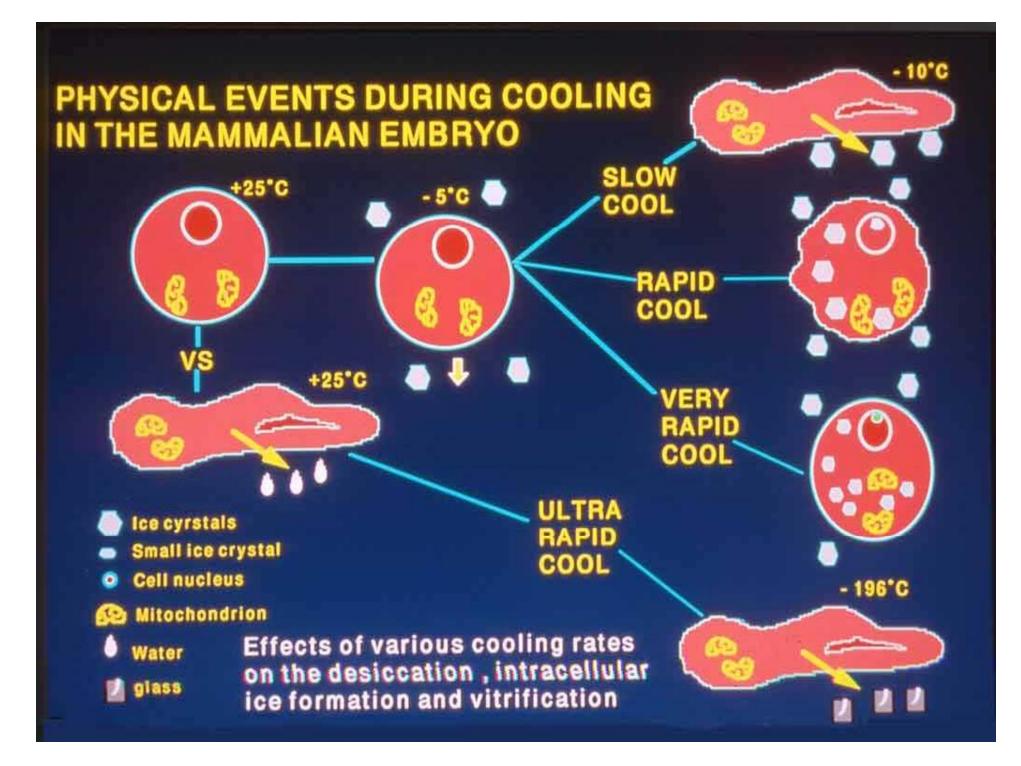

▣	Cryoprotect	M Conc .	<u>v/v</u>
	Sucrose	2.0M	(68.4%)
	B. Glycol	3.0M	(27%)
	Methanol	No vit	N.A.
	P. Glycol	4.0M	(30.4%)
	DMSO	5.0M	(39.1%)
	Glycerol	5.0M	(46.1%)
	E. Glycol	6.5M	7.0M (37.5%)
	(Ali, 1992; Ali and S	helton, 1993a)	


2. Dehydration

and its impact on intracellular solute concentration


- Vitrification solutions highly concentrated
- Causes rapid dehydration of cells
- Permeability of water 5000x faster than most solutes
 - Jackowski S, Leibo SP, Mazur P., 1980
- Rapid dehydration increase intracellular solute concentration
- Increase in intracellular solute concentration for intracellular vitrification
- High intracellular solutes promotes & contributes to intracellular glass formation

Severe dehydration after exposure to VS Ali and Shelton, 1993



Volume changes after exposure to VS

- Volume decreases instantaneously due to very high solute concentration
- Embryo usually attains a volume 15% of original
- Severe dehydration essential for icefree cryopreservation

Ali and Shelton, 1993

3. Volume of vehicle

- Use of tiny / smaller vehicles a strategy for using cryoprotectant solution that lacks sufficient solute concentration to vitrify in straws during cooling and remain vitrified during warming
 - Promotes faster cooling but disadvantageous difficult to maintain asepsis
- Larger vehicles need cryoprotectants of higher solute concentration to vitrify and remain vitrified during warming
 - Cooling takes longer -disadvantage require high solute conc that is often toxic to cells/embryos

Cooling and warming rates

[must be ultra rapid to prevent ice nuceli formation and growth]

 Cooling rate for a 0.25 mL straw when plunged directly into liquid nitrogen from room temperature is about 2500oC/min.

(Rall, 1987)

■ The warming rate for a 0.25mL straw from – 196oC to 25oC is about 1000oC/min.

(Rall et al., 1986)

- If the volume is reduced to about 1 μL it will be possible to increase the cooling rate to about 15 000–30 000oC/min. (Martino et al., 1996; Vajta et al., 1997; Arav & Zeron, 1997)
- Same rules apply for warming rates. Higher warming rates will prevent the formation and growth of ice nuclei during warming. A warming rate in the order of 4460oC/min has been used to successfully warm vitrified embryos

VITRIFICATION

Chemo- and Osmotoxicity

- the main problems because

have to use high concentrations of chemicals to achieve vitrification

Vitrification Vs Toxicity

	Cryoprotect	Conc Vitrific	Conc. Toxic
	Sucrose	2.0M	2.0M (68.4%)
▣	B. Glycol	3.0M	2.0M (27%)
	Methanol	No vit	N.A.
	P. Glycol	4.0M	4.0M (30.4%)
	DMSO	5.0M	5.0M (39.1%)
	Glycerol	5.0M	5.0M (46.1%)
	E. Glycol	6.5M	7.0M (40.4%)
	(A1: 1000, A1:	$\frac{1}{1002}$	

(Ali, 1992; Ali and Shelton, 1993a)

Toxicity Studies - Ethylene glycol

Table 5.1:			trations of eth at 25 degree	
Molarity of	Pe	rcentage mo	rulae that surv	vived
ethylene		Duratio	n of exposure	(mins)
glýcol	control	5 mins	10 mins	20 mins
5.0	96.0	98.6	89.7	97.4
x/n	(71/74)	(72/75)	(70/78)	(74/76) 6
6.0	72.1	71.4	63.2	73.1
x/n	(62/86)	(40/56)	(36/57)	(57/78) 5
7.0	92.8	61.8	41.1	2.7
x/n	(77/83)	(42/68)	(30/73)	<mark>(2/74)</mark> 4
8.0	97.9	41.7	0	
x/n	(46/47)	(20/48)	(0/49)	(0/49) 3

- EG least toxic cryoprotectant
- Toxic only at 7M Conc

Toxicity of cryoprotectants

Table 3.2 The durations of exposure (5, 10, or 20 min) at which molar concentrations of cryoprotectant are toxic to day-4 mouse embryos

Molar	Cryoprotectant											
concentration	EG	Gly	DMSO	PG	Meth	BG						
2.0		20	>20	>20		5						
3.0		20	>20	10	>20	5						
4.0			20	5	>20							
5.0	>20	10	5	5	>20							
6.0	>20	5	5		10							
7.0	5											
8.0	5											

EG, ethylene glycol; Gly, glycerol; DMSO, dimethyl sulfoxide; PG, propylene glycol; Meth, methanol; BG, butylene glycol.

Ali and Shelton, 1993

Designing vitrification solutions

Many types, eg:

Binary: (Water + 1 cryoprotectant) Ternary: (water + 2 cryoprotectants) - most common Quatenary: (Water + 3 cryoprotectants) - areas of res Pentanary: (Water+ 4 cryoprotectants) - areas of res

and so forth

More cryoprotectants in VS : A strategy for reducing toxicity of the VS

eg: 1.0M DMSO +1.5M PROH + 1.5M Gly + 2.0MEG + 0.5 SUC

3,044 Ternary cryo solutions were investigated

- Alanine
- Butylene glycol
- Dextran
- Dimethyl Sulphoxide
- **Ethylene glycol**
- Ficoll

- Glycerol
- Methanol
- Propylene glycol
- \bullet **PVP**
- Polyethylene glycol
- Sucrose

Designing ternary vitrification solution

	Т	able 4	.1:			ranc g int																								
					_	rmin				Jen			ig oi	10.3	iyiu	loan	100		11077	eur	y pi	ungi	ng i		quic	4 1110	oyei	6		
									<u></u>				200		Cim A				-											_
									TH	TLC		GL	τιι		IU V		JUCE	entr	auo	nsj										-
			0.	0	0.	5	1.	0	1.	5	2.	0	2.	5	3.	0	3.	5	4.	0	4.	5	5.	0	5.	5	6.	0		
		Mode	D	S	D	S	D	S	D	S	D	S	D	S	D	S	D	S	D	S	D	S	D	S	D	S	D	S	KEY	
	0.0) <u>c</u>	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	I	М	Ι	М	- 1	М	_	
		W	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	C = Cooling to	
	0.5		M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	ML	M	MI	M		M	T	M	T		-196C	
	1.0	W	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	W= Warming to	
	1.0		M	M	M	M	M M	M	M M	M	M	M M	M M	M	M	M M	M M	M	н М	M	TI M	M	M	M M	н М	TI M	н М	TI M	+25C	
Concentrations)	1.5		M	M	M	M	M	M	M	M	M	M	M	M	IMI	M	IMI I	M	TI	M	T	M	T	IMI I	T	Т	Т	Т		
닅	1.0	Ŵ	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	D = Direct plunging into liquid	
Į	2.0		M	M	M	M	M	M	M	M	MI	M	1	M	TI	M	TI	M	T	M	T	1	TK	T	T	T	TK	T	nitrogen	
i bi		W	М	M	M	M	M	М	М	M	M	М	M	M	M	M	M	M	M	M	M	M	М	M	TI	I	TI	Ţ		
Ē	2.5	5 C	м	М	м	М	м	М	М	М	Т	М	I	м	1	М	Т	М	Т	1	Т	Т	Т	Т	T	T	Т	Т	S = Boat cooling	
<u> </u> 2		W	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	Ι	М	T	Ĭ	TK	ΤK	followed by	
M uj	3.0) <u>c</u>	М	М	MI	М	MI	М	ML	М	1	М	T	М	T	I	T	Т	T	T	T	T	T	<u> </u>	T	T	Т	T	plunging into	
H 1		W	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	М	TI	TI	Ť	T	Ť	ΤK	TK	ΤK	liquid nitrongen	
리	3.5		M	M	MI	M	ML	M	MI	M	T	M	T	M	T	ML	T	T	T	T		T	T	T	T	T	T	T	-	
l ffi	4.0	W	M	M	M	M	M	M	M	M	M	M	M	M	M	M	MI	M	TI	TI	T	TK	TK	TK		ΤK	Ť	TK	M= Milky	
ĮΫ	4.0		M	M	MI M	M	M	M M	M	M M	M	M M	н М	M	T M	T M	TK TI	T TI	TK	TK	TK	TK	TK	ТК	TK TK		TK TK	TK	/crystallization	
GLYCEROL	4.5		IMI I	M	T	M	T	M	T	MI	T	MT	T	T	T		Ţ	T	T	T	T	T	TK	T	T	Т	T	T	l = Intermediate	\vdash
Ĭ	1.0	Ŵ	M	M	M	M	M	M	M	M	M	M	ML	M	Ť	Ť	Ť	Ť	TK	TK	TK	TK	TK	тк	TK	TK	TK	TK		
	5.0		T	M	T	M	T	1	T	TI	T	T	T	T	Т	T	Т	Т	TK	T	TK	T	T	T	TK	T	TK	Ŧ	T = Transparent /vitrification	
1		W	М	М	М	М	М	М	М	М	Ι	TI	TI	TI	TI	Ĭ	TI	TI	TI	TI	TI	TI	TI	TI	TI	TI	TI	Ţ	/ / //////	
	5.5	i C	Т	М	Т	ML	ΤK	TI	T	Т	T	Т	Т	T	Т	Т	Т	Т	ΤK	Т	Т	T	ΤK	Т	ΤK	Т	ΤK	Т	K = Fractured	
		W	М	М	М	М	М	М	TI	TI	TI	TI	Т	Ť	TI	TI	TI	TI	Т	TI	TI	Ť	TI	TI	TI	TI	TI	TI	-	
	6.0		T	TI	ТK	T	ΤK	T	Т	T	ТK	Т	Т	Т	Т	T	ΤK	TI	ΤK	Т	T	T	ΤK	T	T	T	T	Т	-	
		W	MI	М	TI	ML	T	Ť	TI	Ť	Т	TI	TI	TI	TI	Ĭ	TI	ΤI	ΤI	TI	TI	TI	T	TI	Ť	TI	TI	TI		

Designing ternary vitrification solutions

	Tab	ole 4.1	0:	Арр	pear	ance	e of	strav	VS CI	onta	ining	q diff	erer	nt me	olari	ties	of di	metł	ıyl s	ulph	ioxic	le ai	nd 1,	2-pr	opa	ned	iol a	, fter o	dire	ct	
				plur	ngin	g inte	o liq	uid r	nitrog	jen i	or co	olin	ig or	nas	tyro	foan	n bo	at fo	llow	ed b	y pl	ungi	ng ir	nto li	quic	l nitr	ogei	n,			
				and	wa	rmin	g at	+25(D.																						
																	_														
								DIM	ETI	ΗYL	. SL	ILPI	HO	KIDE	E (i	n M	Co	nce	ntra	tion	is)								-		
			0.	0	0.	5	1.	Ō	1.	5	2.	0	2.	5	3.	0	3.	5	4.	Ō	4.	5	5.	0	5.	5	6.	0			
		Mode	D	S	D	S	D	S	D	S	D	S	D	S	D	S	D	S	D	S	D	S	D	S	D	S	D	S			KEY
	0.0	С	М	М	М	м	М	М	М	М	М	М	М	М	м	М	М	М	М	М		М	Т	М	Т	М	Т	Т			
		W	М	М	М	м	М	М	М	М	М	М	М	М	м	М	М	М	М	М	М	М	М	М	М	М	М	М			
	0.5	С	М	М	М	м	М	м	М	М	М	М	М	М	м	М	ML	М	MI	м	ΤK	М	ΤK	ΤK	ΤK	Т	ΤK	ΤK			
<u>ି</u>		W	М	м	М	м	м	м	м	М	М	М	М	м	м	М	м	М	М	м	М	М	м	М	TI	Ι	?	ΤK	С	=	Cooling to -196C
Concentrations)	1.0	С	М	М	М	м	М	М	М	М	М	М	М	М	MI	М	MI	М	ΤI	М	T	ΤI	ΤK	ΤK	ΤK	ΤK	ΤK	ΤK			
ati		W	М	М	М	м	М	М	М	М	М	М	М	М	м	М	М	М	М	М	М	М	Т	ΤK	Т	ΤK	ΤK	ТК	W	=	Warming to +25C
±	1.5	С	М	м	М	м	М	м	м	М	ML	М	ML	М	MI	М	Т	М	Т	TI	Т	Т	ΤK	Т	T	Т	ΤK	T			
8		W	М	М	М	м	М	м	М	М	М	М	М	М	м	М	М	М	М	м	TI	TI	Т	TI	T	TI	Т	T	D	=	Direct plunging in
5	2.0	С	М	м	М	м	М	м	м	MI	MI	М	Ι	М	T	TI	ΤK	T	ΤK	Т	ΤK	Т	ΤK	Т	ΤK	Т	ΤK	Т			liquid nitrogen
<u> </u>		W	М	М	М	м	М	м	М	М	М	М	М	М	м	М	м	М	ΤK	ΤK	?	ΤK	Т	ΤK	ΤK	ΤK	ΤK	ΤK			
(in M	2.5	С	м	м	М	м	МІ	м	Ι	М	T	М	Т	МІ	ТК	TI	ΤK	T	ΤK	ΤK	ΤK	ΤK	ΤK	ΤK	ΤK		ΤK	ТΚ	S	\rightarrow	Boat cooling
E		W	м	м	М	м	М	м	м	М	М	М	М	М	ТК	М	ΤK	Ι	ΤK	ΤK	T	T	T	Т	T	ΤK	T	ΤK		\mapsto	followed by
⊣	3.0	С	М	м	Ι	м	Ι	м	T	М	T	MI	ΤK	T	T	T	ΤK	T	ΤK	ΤK	ΤK	ΤK	ΤK	ΤK	ΤK	ΤK	ΤK	T		\rightarrow	plunging into
∺	L	W	М	м	М	м	М	м	М	М	М	М	М				ΤK	ΤK	ΤK	ΤK	T	?	?	?	T	ΤK	ΤK	ΤK			liquid nitrogen
	3.5	С		М		м	T	М	ΤK	MI	T	T	ΤK	T	ΤK	T	ΤK	T	ΤK	T	ΤK	T	ΤK	T	ΤK	ΤK	ΤK	T			
Z		W	М	М	М	м	М	М	М	М	MI	MI			T	ΤK	T	ΤK	?	ΤK	?	ΤK	?	ΤK	ΤK	ΤK	ΤK	ΤK	м	=	Milky
9	4.0	C	T	М	T	MI	T	TI	T	T	T	T	TK	T	TK	T	TK	T	TK	T	TK	T	TK	T	TK	T	TK	TK		\square	/crystallization
2-PROPANEDIOL	45	W	M	M	M	M	M	M	M	M	TK	1	T	TK	?	TK	?	TK	?	TK	?	TK	T	TK	?	TK	?	TK			
	4.5	C	T	MI	T	TI	TK	T	TK	T	TK	T	TK	T	TK	T		=	Intermediate												
1,1	F 0	W	M	M	M	M			TK	TK	TK	TK	?	TK	?	TK	TK	TK	TK	TK	?	TK	?	TK	?	TK	?	TK	-		T .
	5.0	C	T	T	ТК	TK	T	TK	TK	TK	TK	TK	TK	 ти	TK	TK	TK	TK	TK	TK	TK	TK	TK	TK	TK	TK	TK	TK		=	Transparent
	5.5	W	MI	MI T	TV		TK	TK	TK	TK	T	?	T	TK	? 	TK	T	? TK	?	? 	? 	? 	? 	?	? 	? 	? 	? TK			/vitrification
	5.5	C	T		TK	TK TK	T TK	TK ?	TK T	ΤK ?	ΤK ?	TK	TK	TK	TK	T TK	TK		ΤK ?	TK TK	ТК ?	ТК ?	TK	ΤK ?	TK	TK	TK		V		Frank ward
	6.0	W	TK	T	ТК	TK		í T	TK	TK	TK	? דע	? דע	? TK	? TK		? TK	? T					? דע	_	? TK	? דע	? דע	? TK		=	Fractured
	0.0	C W	1N ?				ΤK ?	ТК	T			ΤK ?	TK ?	2		TK		TK	TK T	TK	TK	ΤK ?	ΤK ?	ΤK ?	1N ?	TK	TK	1N ?		\vdash	
		W	(ΤK	?	TK	?		1	?	?	((?	?	?	T	1K	1	?	?	((((?	?	?	\square	\vdash	

The Ideal Vitrification Solution?

 Out of 3,044 solutions investigated for vitrification & toxicity properties only **ONE** appeared promising, that is:

5.5M ethylene glycol + 2.5M glycerol (VS1)

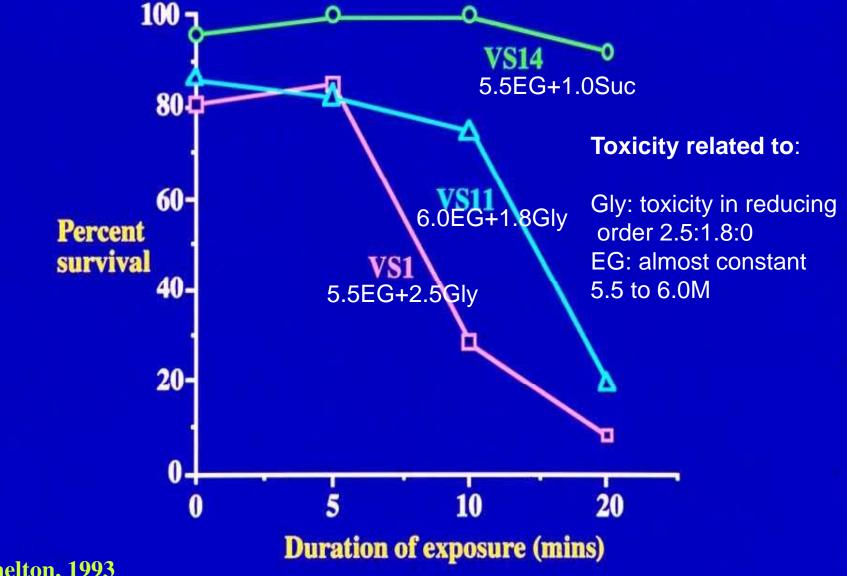
- **BUT VS1** toxic to some developmental stages of mouse/sheep embryos
- So VS1 was further modified another 14 modifications
- **•** Total of 14 modifications made from VS1 i.e: VS2 to VS15
- Of these only VS14 appeared MOST PROMISING
- 5.5 ethylene glycol + 1.0M sucrose (VS14) (Ali, 1992; Ali and Shelton, 1993a,b,c)

VS1 and VS11 Toxic to some developmental stages of mouse and sheep embryos

Mou	se embry	7 05				
VS	Treatment	SO blastocysts, early blastocysts and morulae	SO 8 cell	SO 4 and 2 cell	SO 1 cell	F ₁ 1 cell
VS1	Control	89.6	87.2	85.3	40.0	87.1
	Exposed Vitrified	91.9 92.6	36.8 21.6	8.0 0	7.3 0	78.1 66.7
VS11	Control Exposed Vitrified	100 98.8 94.4	94.6 75.4 91.2	89.7 41.8 19.0	40.0 37.2 16.3	90.9 86.4 0

Table 1. Percentage survival in vitro of day-6 sheep embryos exposed* to orvitrified with VS1 and VS11

		Stage of development								
Vitrification solution	Treatment	Blastocyst	Early blastocyst	Morula						
VS1	Control	100 (6)**	96.4 (28)	59.0 (39)						
	Exposed	100 (4)	64.3 (14) ^a	59.5 (42)						
	Vitrified	11.1 (9) ^b	24.2 (33) ^c	26.8 (41) ^b						
VS11	Control	88.9 (27)	87.5 (24)	71.7 (46)						
	Exposed	75.0 (20)	80.0 (5)	68.0 (20)						
	Vitrified	11.5 (26) ^c	81.8 (22)	85.7 (42)						


*Durations of exposure were 1 min for blastocysts, 2 min for early blastocysts and 3 min for morulae. **Numbers in parentheses are numbers of embryos in the group. *P < 0.05 compared with controls; bP < 0.005 compared with controls; P < 0.0001 compared with controls.

Further improvement needed to enhance survival post vitrification

Final modifications to VS1

3,044 cryoprotectants solutions ↓ VS1: 5.5M Ethylene Glycol + 2.5M Glycerol ↓ VS11: 6.0M Ethylene Glycol +1.8M Glycerol ↓ VS14: 5.5M Ethylene Glycol + 1M Sucrose

Fig. 1: Survival of day-4 mouse morulae after exposure to vitrification solutions at 25C.

Ali and Shelton, 1993

Survival of vitrfied mouse embryos. Ali and Shelton, 1993

In Vitro Survival	VS1	VS11	VS14
Developmental stage	5.5E+2.5G	6E+1.8G	5.5E+1S
SO Mice			
D-4; Blastocyst	86% (NS)	93% (NS)	97% (NS)
D-4; Early Blast	95% (NS)	96% (NS)	97% (NS)
D-4; Comp morulae	88% (NS)	93% (NS)	98% (NS)
D-3; 8-cell	22% (S)	91% (NS)	87% (NS)
D-3; 4-cell	0 (S)	12% (S)	70% (NS)
D-2; 2-cell	0 (S)	23% (S)	71% (NS)
D-1; 1-cell	0 (S)	16% (S)	19% (S)
D-1; 1-cell;F1	67% (NS)	0% (S)	92%(NS)
In Vivo Survival (SO) Contr		VS11	VS14
D-4 Embryos 19.1%		24.3%(NS)	26.1%(NS)
$n^{-}(x)$ (125)	(33)	(116)	(31)

Survival of day 6 sheep embryos in VS11 and VS14

Table 3.8	Viability of da	ay-6 sheep embry	yos vitrified with VS11	1 or VS14 and	transferred to surrogates
-----------	-----------------	------------------	-------------------------	---------------	---------------------------

Vitrification procedure	Dilution procedure	Stage of development	Percentage developed to live fetuses	Percentage of surrogates pregnant
One-step VS11	With sucrose	Morulae	7.9	15.8
		Early blastocysts	2.4	4.4
		Blastocysts	0	0
	Without sucrose	Morulae	13.3	26.7
		Early blastocysts	0	0
		Blastocysts	0	0
Total one-step VS11			(8/158) 5.1	(8/79) 10.1
Two-step VS11	With sucrose	Morulae	55.2	78.6
		Early blastocysts	10.0	20.0
		Blastocysts	62.1	78.6
		Expanded blastocysts	50.0	50.0
Total two-step VS11			(37/72) 51.4	(25/35) 71.4
One-step VS14	With sucrose	Morulae	50.0	100.0
		Blastocysts	100.0	100.0
		Expanded blastocysts	0	0
Total one-step VS14			(5/10) 50.0	(3/5) 60.0

Teratogenicity not noted in mouse fetuses derived from vitrified embryos

Ali and Shelton, 1993

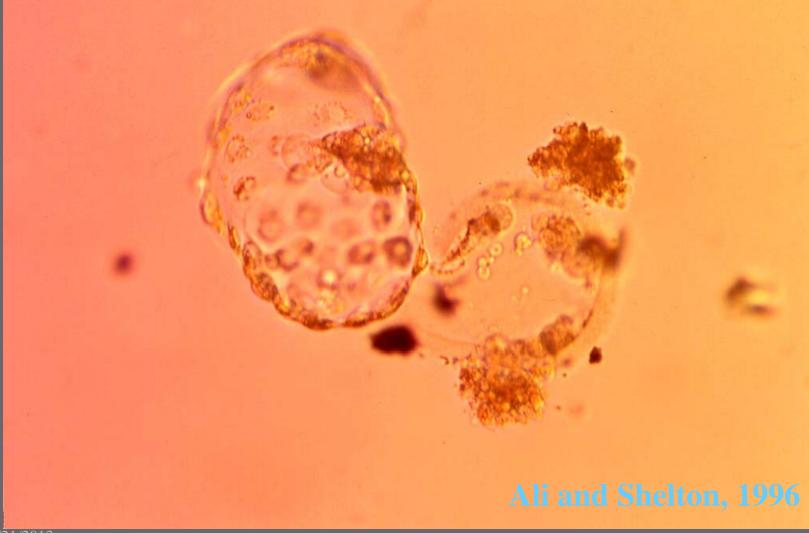
Vitrified mouse embryos are viable and can result in normal young ; Ali and Shelton, 1993

Mice derived from vitrified embryos reproduce and give birth to normal young Ali and Shelton, 1993

Developmental competence of VS14 vitrified human day 2 1PN and 3PN embryos Developmental Stage Survival (Day-2) (n=39) (n=24)

1st cleavage (D-3) 89.7 % 83.3 % (n=35) (n=20) Morula/Comp Mor (D-4) 60.0 % 75.0 % (n=23) (n=18) 41.0 % 37.5 % Early cavitation (n=16) (n=9) frozen **Expanded blastocyst** 16.7 % (n=4)4.2 %

Hatched blastocyst


(Ali, 1996)

(n=1)

Hatching human blastocyst (Vitrified at day 2 cleaved stage)

Hatched human blastocyst (Vitrified at day 2 cleaved stage)

Clinical Trial on VS14

Clinical Trial: VS14 NOT Approved by Ethics Committee – 1996. Unable to do any further work on VS14 since 1996

But numerous workers around the world used VS14 successfully to cryopreserve a wide range of human/animal:

Oocytes (mature/immature) with live births Embryos (zygote, day2/3 & blastocysts –live births Ovarian tissue, and cell lines. ESC lines have been vitrified successfully with VS14

Refs next slide

VS14 successfully utlized by other workers worldwide

22. Martino A, Songsasen N, Leibo SP. Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling. Biol Reprod 1996;54:1059-69.

31. Papis K, Avery H, Holm P, et al. The effect of vitrification solution, equilibration time, and direct dilution method on survivability of equilibrated or vitrified bovine in vitro matured oocytes. Theriogenology 1995; 43, 293 (abstr)

32. Ali J. Developmental competence of unipronuclear and triploid day-2 human embryos after vitrification with VS14. Med Sci Res 1996a;24:377-8.

33. Ali J. Highly efficient ultrarapid cryopreservation of established cell lines by vitrification with VS14. Med Sci Res 1996b;24:837–8.

34. Hong SW, Hyung MS, Chung HM, et al. (1999) Improved human oocyte development after vitrification: a comparison of thawing methods. <u>Fertil Steril</u> 1999;72:142 –6.
35. Chen SU, Lien YR, Chen HF, et al. Open pulled straws for vitrification of mature mouse oocytes preserve patterns of meiotic spindles and chromosomes better than conventional straws. <u>Hum Reprod</u> 2000a;15:2598–603.

36. Chen SU, Lien YR, Chao KH, et al. Cryopreservation of mature human oocytes by vitrification with ethylene glycol in straws. Fertil Steril 2000b;74:804–8.

37. Choi DH, Chung HM, Lim JM, et al. Pregnancy and delivery of healthy infants developed from vitrified blastocysts in an IVF-ET program. <u>Fertil Steril</u> 2000; 74:838–9.
38. Chung HM, Seung WH, Hong MS, et al. In vitro blastocyst formation of human oocytes obtained from unstimulated and stimulated cycles after vitrification at various maturational stages. Fertil 2000;73:545 –51.

39. Yoon TK, Chung HM, Lim JM, et al. Pregnancy and delivery of healthy infants developed from vitrified oocytes in a stimulated in vitro fertilization-embryo transfer program. Fertil Steril 2000;74:180 –1.

40. Yoon TK, Kim TJ, Park SE, et al. Live births after vitrification of oocytes in a stimulated in vitro fertilization-embryo transfer program. Fertil Steril 2003;79:1323-6.

41. <u>Yin H, Kim SS</u>, <u>Fisher J</u>, et al. Investigation of optimal conditions for equilibrating ovarian tissue with ethylene glycol prior to vitrification. <u>Fertil Steril</u> 2001;76: Suppl.1, pp. S101(abstr)

42. <u>Kim, TJ, Hong SW, Park, SE, et al.</u> Pregnancy after vitrification of human oocytes and blastocysts using same cryoprotectant solution, ethylene glycol, and sucrose. <u>Fertil</u> 2003;80:Suppl. 3, pp.143 (abstr)

43. <u>Kim T, Hong S, Cha K.</u> Pregnancies from cryopreserved oocytes using vitrification protocol. <u>Fertil Steril</u> 2005;84:Suppl.1, pp.S179 (abstr)

44. <u>Kim SH</u>, <u>Ku SY</u>, <u>Sung KC</u>, et al. Simplified EM grid vitrification is a convenient and efficient method for mouse mature oocyte cryopreservation. <u>Yonsei Med J</u> 2006; 30;47(3):399-404.

45. Kim, TJ, Hong SW, Chung HM, et al. Pregnancy and delivery after vitrification of human oocytes. Fertil Steril 2005;83:Suppl.5, pp.S13 (abstr)

46. <u>Park SE, Chung HM, Cha KY, et al.</u> Cryopreservation of ICR mouse oocytes: improved post-thawed preimplantation development after vitrification using Taxol, a cytoskeleton stabilizer. <u>Fertil Steril</u> 2001;75(6):1177-84.

47. <u>Park SE, Kim TJ, Hong SW, et al.</u> Vitrification of human mature oocytes in a straw to prevent the risk of liquid nitrogen contamination during storage. <u>Fertil Steril</u> 80:Suppl. 3, pp.64-5 (abstr)

48. <u>Hong S, Kim T, Lee S, et al.</u> Cryopreserved blastocysts using vitrification protocol give excellent pregnancy and implantation rates after thawing. <u>Fertil Steril</u> 2005:84:Suppl.1, pp.S178-S179 (abstr)

49. Martins RD, Costa EP, Chagas JSC, et al. Effects of vitrification of immature bovine oocytes on *in vitro* maturation. <u>Anim Reprod</u> 2005;2:128-34

50. El-Danasouri I, <u>Selman HA.</u> Successful pregnancies and deliveries after a simple vitrification protocol for day 3 human embryos. <u>Fertil Steril</u> 2001;76:400-2.

51. <u>Selman HA, El-Danasouri I.</u> Pregnancies derived from vitrified human zygotes. <u>Fertil Steril</u> 2002;77:422-3.

52. <u>Rama Raju GA</u>, <u>Haranath GB</u>, <u>Krishna KM</u>, et al. Vitrification of human 8-cell embryos, a modified protocol for better pregnancy rates. <u>Reprod Biomed Online</u> 2005;11:434-7

53. Cha et al., 2006: FIGO . Successful vitrification of human oocytes

5/21/2013

Making vitrification safer

Use closed aseptic vitrification – incl. the 0.25ml straw
 Eliminate use of <u>hazardous donor serum proteins</u> in vitrification solutions to prevent transmission of disease

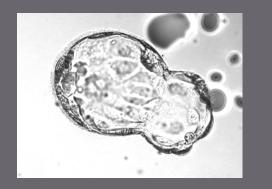


Fig: A hatching blastocyst vitrified using VS14 devoid of added serum proteins – a protein-free VS

Vitrification methods must comply with GLP/GCP

Vitrification now cryo method of choice in IVF

For good reasons:-

- RapidEconomical
- Less demanding on manpower resources
 Above all could be as efficacious as or better than conventional methods

Comparison between closed and open vitrification

Authors	Entity cryo-ed	Outcome / Tech	nique	Recommendations/
		Open	Closed	Inference
Panagiotidis et al., 2013	Blastocyst	Vitrisafe Open	Vitrisafe Closed	
RBMOnline	Human	Comparable	Comparable	Both technic OK
Hashimoto et al. 2013	Blastocyst from	Open vitrif sys	Closed Vitrif Sys	
Assist Reprod Genet.	cryopreserved	Comparable	Comparable	Both technic OK
	zygotes Human			
AbdelHafez et al., 2011	Cleavage stage	Cryotop	Cryotip HVS	Open Crytop comparable
BMC Biotechnol.	Blastocyst	Comparable	Comparable	to Closed HSV but not Cryotip
Bino Biolecinioi.	Human	Comparable	Comparable	lower survival with Cryotip
Valbuena et al., 2012	Blastomeres	Cryotop	Cryotip	Closed better than open
Fertil Steril.	Mouse & Human	poor survival	Better	technic
			surivival	
Paffoni et al., 2011	Oocytes	Better	less	Comparison were
RBM Online.	Human	efficiency	efficient	between two separate
				expts with fresh controls
Bonetti et al.,2011	Occytes	Cryotop	Closed less	
Fertil Steril	MI	more efficient	efficient	Open better than closed
	Human	Ultrastructure	Ultrstructure	
		Better preserved	Less preserved	
Ramezani et al. 2005	2-cell embryos	OPS	Closed pulled	
Cryo Letters	Mouse	Less efficient	straw better	
				Closed pulled straw better
			Closed	than open pulled straw or
			convent. straw	closed conventional straw
AL		000	Less efficient	
Chen et al., 2001	Occytes	OPS Less efficient	Closed pulled straw better	
Hum Reprod	Mouse	Less emcient	straw better	
			Closed	
			convent. straw	
			Less efficient	
			Loos Smarant	
			Girds	
			Less efficient	

Overall

- In general closed system appears more efficient than open system for embryos and blastomeres
 - For human eggs the open system appears more efficient
- For human eggs more work is needed to developed efficient closed system of vitrification
- It may be possible to use conventional straws if an efficacious vitrification solution can be designed for human oocytes
- After more than a decade of exposure of transplantable tissues to infectious agents and hazardous chemicals it is heartening to see people re-considering aseptic techniques!!

CONCLUSION

•Excellent outcome with vitrification; Vitrification poised to replace conventional freezing techniques within this decade

•Closed conventional straw VS14 method works; no need to subject tranplantable embryos and oocytes to potentially hazardous agents in LN2

•Need more research to vitrify oocytes in closed systems

Need for more research on quartenary & pentanary VS
Need for research to eliminate use of hazardous donor proteins in VS

Acknowledgement

Dr Jim Shelton, PhD, DVSc

- □ (Late) Dr Wes Whitten, DSc, FA
- My family for their patience
- Dr Peter J. Mc Cullagh, MBBS MPhil
- John Curtin School of medical Research, Australian National University
- Travel grant from LabIVF Malaysia