Non-invasive embryo Evaluation

Barry Behr, Ph.D., HCLD
Professor
Director, IVF/ART Laboratories
Co-Director, REI/IVF Program
Dept Ob/Gyn
Stanford University Medical Center

Disclosure

- I am a founder of Auxogyn
- I am a founder of Blastogen/IviGen

Outline

- Background
- Historic perspective
- Current approaches
- Future technologies

What's Important?

The Patient stimulation Which stage Which embryo **IVF** outcome

What culture system

What media

IVF Field Awaiting a Breakthrough

First IVF Baby and First IVF Clinic in the US

"Young fertility investigators today should figure out which one embryo is likely to make a baby rather than transfer several. That will reduce costs, the number of multiples births and significantly increase success rates of in vitro fertilization, which currently hover around 30%-surprisingly close to the 28% success rate his team was seeing in the 1980s."

Risks of Multiple Embryos Transferred

- Short- and long-term risks to offspring
 - Increased chance of miscarriage
 - Low birth weight (LBW) and pre-term birth occur 7x and 5x, resp. (Barker Hypothesis)
 - 80% of infant mortalities result from 8% LBW, 13% pre-term births
- Risks to the mother
 - Pre-eclampsia / hypertensive disorder
 - Pregnancy-induced diabetes
 - Miscarriage and other prenatal complications often requiring hospitalization
- Selective fetal reduction

Which one?

Traditional Approach

The Balancing Act!

Problems with Embryo Assessment

- Subjective
- Poor standardization
- Timing dependent
- Can compromise development
- Pre vs Post genomic activation
- Paternal contribution assessment

What you see is not always what you get!

But...morphology isn't everything!

Current Embryo Assessment

Embryos are evaluated based on simple morphological assessment on days 1 and 3

Step 1: Embryos develop in incubator

Step 2:
Occasional monitoring
and Day 3 selection

Viable

Non-Viable

Non-Viable

Viable

Viable

Non-Viable

The dilemma.....

BOTH RESULTED IN A SINGLETON

Human Embryo Development

Important factors to consider

- Incubation chamber
- pH levels
- O₂ levels
- Oil vs. open culture
- Volume of medium
- Oocyte/Embryo density
- Mode of fertilization

- The time of gamete coincubation
- Assisted hatching
- PGD
- Embryo transfer technique
- Ovarian stimulation protocols

Ultimate Goal

- Achieve a healthy singleton pregnancy
- Transfer fewer embryos (1 or 2)

New Technologies

What can we do?

- What do you need to be healthy?
 - Good genes
 - Good metabolism

Embryo Selection Landscape

Most technologies lack clinical trials. No results exist to demonstrate improved blastocyst prediction or pregnancy rates.

Approach

Chemistry

- Metabolomic profiling
- Amino Acid uptake
- Cummulus Cell analysis

Genetics

 Full Karyotype - Preimplantation Genetic Screening (PGS)

Imaging

- Unisense/Primo Vision
 - Time lapse imaging of embryos
- Olympus/Sanyo/Nikon/Astec
 - Instrumentation

Limitation

- Technology adoption challenge
- Doesn't fit in current workflow

- Mosaicism?
- Experts disagree on effectiveness?
- Invasive procedure

- No predictive parameters (yet)
- No prospective studies to show efficacy
- Lack of human data, emerging

Amino Acid Uptake: Novocellus

- Immediate goal: 30% increase in IVF success rates.
 - Ultimate goal 50% increase in Single Embryo Transfer rates to match those with two or more embryos replaced

Novocellus

- Need to use proprietary media
- Culture in micro volumes

"Omics" era.....

- Economics
- Genomics
- Proteomics

The "omics"

Functional Phenotype

Proteomic analysis of individual human embryos to identify novel biomarkers of development and viability

Mandy G. Katz-Jaffe, Ph.D., David K. Gardner, Ph.D., and William B. Schoolcraft, M.D.

Colorado Center for Reproductive Medicine, Englewood, Colorado

Proteomics

- Current approaches:
 - Not user friendly
 - Not rapid
 - Not high through put

Proteomics

- Most proteins are NOT secreted
- Proteins used for internal processes

Metabolomics

Molecular Biometrics Metabolon

Biomarker Spectral Signatures (by NIR)

Juman Embryo Time-Janse Studies

Traman Embryo mino lapso otadios				
Paper	Published	Samples		Conclusions
Payne et al. Hum Reproduction	1997	50 2PN	•	Observed details of the fertilization process to 20 hrs
Lemmen et al. RBM Online	2008	102 2PN oocytes	•	Reported PN appearance & disappearance Correlated synchrony in nuclei appearance after 1st cleavage with pregnancy success
Mio et al.	2000	286	•	Observed details of the fertilization process

2PN

247

2PN

80

2PN

10 oocytes

or zygotes

Pribenszky et al.

Meseguer et al.

Hashimoto et al.

RBM Online

Hum Reprod

Swann et. al.

Fertil steril

Fert Steril

2010

2011

2012

2012

2008 **Am J Obstet Gyn** Reported two ICMs - monozygotic twins oocytes Identified **cell cycle parameters** that predict blastocyst formation by Day 2 Wong et al. 242 2010 Demonstrated that parameters correlate to embryo gene **Nature Biotechnology** 2PN expression data Developed cell tracking software

Reported a live birth

Evaluated cell cycle parameters to implantation

Evaluated cell cycle parameters for blastocyst quality

Correlated cytoplasmic movements with Ca²⁺ oscillations.

Imaging Systems (currently available in the USA)

Unisense EmbryoScope

Primo Vision

Olympus

Nikon Biostation

Astec real time monitoring system

what is the embryo equivalent?

i.e. non-invasive, quantitative assessment

4-4-4-

Summary

- Many opportunities to interrogate embryos.
- Time laps imaging offers a lot of promise. Prospective trials emerging.
- Parameters of the first three mitotic divisions prior to embryonic activation indicate success to blastocyst (>93% specificity and sensitivity); suggesting success/failure inherited (maternal).
- Defects in underlying molecular programs underlie aberrant blastomere behavior.
- Should be able to be measured other ways?
- Improved diagnostics = (Early transfer), fewer embryos, reduced adverse outcomes and increased success.