Vitrification: Choosing which blastocysts to vitrify

Joe Conaghan PhD

Pacific Fertility Center San Francisco

Las Vegas, ABB Mtg, May 17th 2013

Blastocyst preservation

- Scope of service
 Blastocyst vitrification introduced 2007
- 800+ retrievals per year
- 50% have blastocysts vitrified
- Average no. of embryos vitrified = 4.4
- 350 FET's per year (25% of cases)

The changing face of the IVF lab

% of retrievals with ET

Vitrification Going forward

- PGS with Troph biopsy gaining in popularity
- 2. More FET cycles
- 3. Embryologists will spend more time vitrifying and warming
- 4. Fertility preservation

Elective single embryo transfer (eSET)

- Ability to culture embryos
- 2. Choice of embryos for transfer and cryopreservation
- 3. Reliable freezing

Fresh IVF Cycles: Number of embryos transferred

Day 3 ET Day 5 ET

CDC Data: Own oocytes only

FET Results 2012

	<35	35-37	38-40	41-42	>42
Transfers	112	58	60	23	3
Clinical Pregnancies	66	41	40	11	1
Clinical Pregnancy Rate	0.59	0.71	0.67	0.48	0.33
Embryos Transferred	144	81	95	32	3
Embryos Implanted	79	52	54	11	1
Implantation Rate	0.55	0.64	0.57	0.34	0.33
Av. Embryos transferred	1.3	1.4	1.6	1.4	1.0

PGS Results 2012

	<35	35-37	38-40	41-42	>42
Transfers	18	13	21	11	2
Clinical Pregnancies	12	11	15	6	1
Clinical Pregnancy Rate	0.67	0.85	0.71	0.55	0.50
Embryos Transferred	22	14	24	11	2
Embryos Implanted	15	12	17	6	1
Implantation Rate	0.68	0.86	0.71	0.55	0.50
Av. Embryos transferred	1.2	1.1	1.1	1	1

Vitrification Steps to success

- Quality of embryo is not a factor
- Collapse the big blastocysts
- 3. Use a simple protocol
- 4. Warming rate must be faster than cooling rate.
- Make sure device is sealed

Blastocyst grading (SART)

Stage	ICM	Trophectoderm
Early (cavity <50% vol.)	Good	Good
Blastocyst (Cavity 50% or more)	Average	Average
Expanded (Zona stretching)	Poor	Poor
Hatching		

Can we agree on grading?

Stage:

ICM:

TE:

Can we agree on grading?

Stage: Expanded

ICM: Good

TE: Good

Can embryologists agree on embryo grading?

Stage	ICM	Troph
Morula		
Early Blast	Good	Good
Blastocyst	Average	Average
Expanded	Poor	Poor
Hatching		

What stage is this embryo at?

- 1. Morula
- 2. Early Blastocyst
- 3. Blastocyst
- 4. Expanded Blast
- 5. Hatching Blast

Blastocyst grading proficiency

Blastocyst grading results (n=119)

Let's try again

Stage	ICM	Troph
Morula		
Early Blast	Good	Good
Blastocyst	Average	Average
Expanded	Poor	Poor
Hatching		

Blastocyst grading results (n=119)

Blastocyst grading results (n=119)

Embryo grading results (n=119)

Zygote grading results (n=119)

Sperm Count, Sperm Present/Absent

	Method	Ab No.	sent %	Pres No.	ent %
	Conception Technologies Micro Cell	_	-	61	100.0
	Hemocytometer-bright field	4	0.6	634	99.4
	Hemocytometer-phase	-	-	66	100.0
	Humagen Counting Chamber	-	-	87	100.0
11	Leja Standard Count	-	-	24	100.0
SEM-11	Millennium Sciences Cell-VU	1	1.3	74	98.7
SE	Sefi Medical Makler	-	-	134	100.0
	Wet Mount	1	0.3	343	99.7
	Other, Specify	1	4.3	22	95.7
	All Methods	7	0.5	1447	99.5
	Intended Response = Present				
	Conception Technologies Micro Cell	61	100.0	-	-
	Hemocytometer-bright field	629	98.6	9	1.4
	Hemocytometer-phase	63	95.5	3	4.5
	Humagen Counting Chamber	86	98.8	1	1.1
12	Leja Standard Count	24	100.0	-	-
SEM-12	Millennium Sciences Cell-VU	73	98.7	1	1.4
S	Sefi Medical Makler	133	98.5	2	1.5
	Wet Mount	341	99.1	3	0.9
	Other, Specify	22	95.7	1	4.3
	All Methods	1434	98.6	20	1.4
	Intended Response & Absent				

Blastocyst Quality

- Prefer to freeze embryos that have a distinct ICM and TE
- Early blastocysts may not have clear differentiated cell populations
- Pity freezes

Which embryo should we transfer? 30 year old patient / eSET. Embryos pictured on morning of D5.

 \mathbf{A}

This 30 year old woman only has these 2 embryos. Which one would you choose to transfer?

A

B

- A. A
- B. B
- C. I'd encourage her to transfer both embryos

Which embryo would you transfer?

- 1. A
- 2. B
- 3. Both

Formation of the ICM

Average embryo should have 20-22 TE cells and 10-12 ICM cells

Moving from 32-cell to 64-cell, embryo can no longer make ICM cells if they don't already exist

Is trophectoderm more important?

- •Embryo puts more energy into making TE
- •If ICM is poor, embryo likely doomed
- But TE relatively more important

Transfer embryos with:

good TE/average ICM or good ICM/average TE

Criteria for vitrifying?

- 1. Loose criteria for D5 blastocysts
- 2. Tight control over D6 vitrification
- 3. No ICM = no vit
- 4. Not keeping embryos until D7
- 5. Assisted collapse used liberally

After fresh transfer, many embryos assessed by 2 embryologists to decide on freezing

This embryo belongs to a 41 year old woman and she has no other embryos to freeze. The picture was taken on the morning of Day 5. Would you vitrify the embryo?

- A. Yes
- B. No
- C. I'd look at it later
- D. I'd culture it to D6

Would you vitrify?

- 1. Yes
- 2. No
- 3. I'd look at it later
- 4. Culture to day 6

48%

This embryo belongs to a 39 year old woman and she has 4 other embryos to freeze. The picture was taken on the morning of Day 6. Would you vitrify the embryo?

- A. Yes
- B. No
- C. I'd look at it later
- D. I'd culture it to D7

Would you vitrify?

- 1. Yes
- 2. No
- 3. I'd look at it later
- 4. Culture to day 7

This embryo belongs to a 32 year old woman and she has 1 other embryo to freeze. The picture was taken on the morning of Day 5. Would you vitrify the embryo?

- A. Yes, even if it was the only embryo
- B. Yes, but only because she has another embryo
- C. No
- D. I'd look at it later
- E. I'd culture it to D6

Would you vitrify?

- 1. Yes
- 2. No
- 3. I'd look at it later
- 4. Culture to day 6

Choosing embryos to Vitrify

- Vitrification does not appear to reduce an embryo's potential for implantation
- Expect pregnancy rates post warming that are similar to fresh rates

We vitrify any embryo that we think has a chance

Borderline embryos

- Vitrifying poor embryos will hurt results
- If you can't decide, you should freeze
- If your results are too good, you are being too selective
- Recognize the importance of failure

Given the choice, patients likely choose freezing

When to warm and transfer?

Natural cycle	hCG	Day -1	Day o	Day 1	Day 2	Day 3	Day 4	Day 5
Progesterone			Ov	P ₄ Day 1	P ₄ Day 2	P ₄ Day 3	P ₄ Day 4	P ₄ Day 5
D ₃ 's						Warm/ ET		
D ₅ or D ₆								Warm/ ET

Common question Do you freeze early blastocysts?

Implantation by stage

SET only, n = 182

Early Blastocyst	Blastocyst	Expanded	Hatching
7/19	43/120	4/27	8/16

a, p = 0.04 and b, p = 0.03

On the day of FET

- We do not wait for embryos to re-expand before transfer
- Assisted hatching after warming
- Embryologist discretion on when to warm a 2nd embryo

Is eSET working?

- 60% of OD recipients doing eSET
- o 246 cycles (2008-10)
- 63% pregnancy rate
- Take home baby/retrieval 2010 cumulative
 - 80% (57/71) in OD recipients
 - o 61% (39/64) for < age 35
- o 3% twins

Conclusions

- Vitrification has driven eSET
- Physician sets expectations
- Embryologists make good embryos
- Collapsing widely used
- Very loose in choosing embryos for Vit.
- Good implantation rates post warming
- Aim is one embryo in fresh and FET cycle

Acknowledgements

- Erin Fischer
- Valerie Hines
- Sergio Vaccari
- Amy Kittleson

- Jean Popwell
- Jennifer Andres
- Arianna Conti
- Simona Torcia

joe@pacificfertility.com