Are we there yet? Ultimate culture conditions in 2017

Barry Behr PhD., HCLD Professor and IVF Laboratory Director Fertility and Reproductive Health Division of Reproductive Endocrinology and Infertility Dept OB/GYN Stanford University

Major steps involved in an IVF procedure:

- 1. Ovarian Stimulation
- 2. Collection of Oocytes
- 3. Collection of Sperm
- 4. Insemination
- 5. In-vitro culture of Embryos (Embryo Selection)
 - Embryo Transfor
- 6. Embryo Transfer
- 7. Obstetrical Follow-up

"Culture conditions" span from follicular flush media to embryo transfer or vitrification media

Personalized Medicine?

• "Precision medicine"

- Chemotherapy

- What about tailoring the culture conditions to the pt or cycle?
- Patient-specific culture requirements
- Do they exist?

30-40 years....and now?

AATCTTHETAGCATO CAENDTAATTGOFAA GCATSEXCGAGCGT

TATCCATCGCATGA

Henry T. Greely

GCATCCAATCTTAGC

UK approves three-person babies

By James Gallagher Health editor, BBC News website

3 24 February 2015 Health

Scientists get 'gene editing' go-ahead

By James Gallagher Health editor, BBC News website

③ 1 February 2016 | Health ⊨

Can (suboptimal) culture conditions be used to screen out embryos with poor potential?

Can culture conditions be too good?

• Promotes "non viable" embryos to develop

 Increased blastocyst formation rate does not always lead to increased pregnancy rate

What are the end points/metrics?

- For determining ultimate culture conditions
 - Media pH
 - Fert rate
 - Development rate (TLM)
 - Embryo grades
 - Blast rates
 - Euploidy rates
- Stanford Healthy Babies

What is the embryo equivalent?

i.e. non-invasive, quantitative assessment

Lab Environment

- Integral part of the "culture environment" – Must be considered
- Air quality
 - Construction materials and equipment
- Lab design and work flow
- Monitoring

OCTAX LOG & GUARD MONITORING, DOCUMENTATION AND ALARMING SYSTEM

Critical sites to emulate, or not?

Reproductive Health

Incubation Chamber

- "Big box" incubator
 - Full size vs mini
 - Recovery times vs work flow
- Bench top
 - Dry vs humidified

Stanford – Mixed gas vs individual gas vs gas mixer

Cryopreservation

- Vitrification
 - DMSO vs no DMSO
 - RT vs 37 degrees

Ooctye/Embryo Handling

- Isolette vs Heated workstation
- "Gas bubblers" vs Ambient air buffered media

Age old questions

- Assisted hatching
 - For advanced maternal age/repeat failures/thick zonae
 - Pre trophectoderm biopsy

Oil Overlay

• Mineral Oil

– Heavy or light

- Paraffin oil
- Storage
 - Light or dark
- Stanford Rt or 2-8 C

Oxygen Concentration

20%<5%<2%? (Racowsky lab)

Table. Stage and cell count of embryos cultured from days 3 to 5 in low (5%) vs. ultralow (2%) O₂

	Stage per cleaved embryo n (%)	5-5% O ₂ Group	5-2% O ₂ Group	OR (95% CI)
-	Cleavage arrest	52/89 (58.4)	34/87 (39.1)	0.38 (0.18, 0.80)
	Morula	17/89 (19.1)	18/87 (20.7)	1.09 (0.47, 2.53)
	Early blastocyst	11/89 (12.4)	23/87 (26.4)	2.59 (1.06, 6.32)
	Full, expanded	9/89 (10.1)	12/87 (13.8)	1.43 (0.56, 3.64)
Stanford	or hatching blastocyst			
MEDICINE	Any blastocyst	20/89 (22.5)	35/87 (40.2)	2.55 (1.27, 5.12)
Fertility and	Usable blastocyst	19/89 (21.3)	32/87 (36.8)	2.30 (1.16, 4.56)
Reproductive Health				

	Stage per cleaved embryo n (%)	5-5% O ₂ Group	5-2% O ₂ Group	OR (95% CI)
-	Cleavage arrest	52/89 (58.4)	34/87 (39.1)	0.38 (0.18, 0.80)
	Morula	17/89 (19.1)	18/87 (20.7)	1.09 (0.47, 2.53)
	Early blastocyst	11/89 (12.4)	23/87 (26.4)	2.59 (1.06, 6.32)
	Full, expanded or hatching blastocyst	9/89 (10.1)	12/87 (13.8)	1.43 (0.56, 3.64)
	Any blastocyst	20/89 (22.5)	35/87 (40.2)	2.55 (1.27, 5.12)
	Usable blastocyst	19/89 (21.3)	32/87 (36.8)	2.30 (1.16, 4.56)
	Mean cell count <u>+</u> SD	5-5% O ₂ Group	5-2% Grou	O ₂ p P-value
	Early blastocyst	44.4 + 2.1	35.5 +	10.9 0.01
Stanford MEDICINE	Full, expanded or hatching blastocyst	83.4 + 15.9	62.0 +	0.04
Fertility and Reproductive Health	Any blastocyst	60.7 <u>+</u> 22.3	43.8 <u>+</u>	0.01

<u>∛</u>

Table. Stage and cell count of embryos cultured from days 3 to 5 in low (5%) vs. ultralow (2%) O2

Use of growth factors

- Not in 2017
- Not going anywhere soon
- 1 commercial product in the world
- Makes sense though

Ectogenesis

The ultimate "culture" conditions

Ectogenesis

• Not what we are doing entirely

- However.....
 - D0-D7 then 22-39 weeks, we are.

Sequential vs Single Step

• Do single step media make compromises to stage-specific nutrient requirements? (assuming they exist)

Specific Elements of Some "Newer Generation" Media

EDTA:

 It binds toxic heavy metals and also inhibits glycolytic enzyme phosphoglycerol kinase

(Sodium) Citrate

It acts as a direct energy substrate, feeding into the TCA cycle.
 Originally found bound to albumin.

Cation's

- Variable Mg++ Concentration
 - High Mg++ concentration decreases the uptake of exogenous Ca++.
 Good to protect embryos from mitochondrial damage and subsequent energy metabolism. But, need Ca++ cascade for for normal fertilization. (capacitation and acrosome reaction.)

Antibiotic choice

- Penicillin/Streptomycin
 - Possible pt interactions
- Gentamycin
 - More broad and stable

Use of Zwitter ion buffers

- Embryo/oocyte handling
- HEPES
- MOPS
- HEPES/MOPS

Ultimate Culture conditions

- Sum of many parts
- All controllable
- Requires significant oversight
- Will change over time

Will we get here?

