

Debating the Pros and Cons of PGD

Richard J. Paulson, MD, MS University of Southern California Keck School of Medicine

Keck School of Medicine of USC

2018 AAB meeting, Orlando, Florida

PGT-A: Knowledge Gaps and Challenges

Richard J. Paulson, MD, MS University of Southern California Keck School of Medicine

Keck School of Medicine of USC

Disclosures

- ASRM
- No commercial affiliations

Learning Objectives

- 1) To describe limitations and knowledge gaps in PGT-A
- 2) To understand the challenges of further PGT-A investigations
- 3) To counsel patients about the appropriate application of PGT-A

It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so.

Mark Twain

Why are we still debating this?

- Numbers are not consistent
- Aneuploidy
 - -Unclear rate
- Mosaicism
 - Unclear incidence in blastocysts (and cleavage stage)
 - Unclear effect on accuracy of embryo biopsy
- Unknown damage from embryo biopsy

PGT-A (PGS) 1.0

- Cleavage stage biopsy
- FISH analysis
- Widely utilized

PGS 1.0 meta-analysis

	PGS Cor		ntrol				
Study or Subgroup	Events	Total	Events	Total	Weight	Risk Difference	Risk Difference, 95% C
ndication Advanced	Maternal	Age				M-H, Fixed, 95% CI	
Staessen 2004	21	199	29	190	36.6%	-0.05 [-0.11, 0.02]	
Mastenbroek 2007	49	206	71	202	38.4%	-0.11 [-0.20, -0.03]	
Hardarson 2008*	3	56	10	53	10.3%	-0.14 [-0.26, -0.01]	
Schoolcraft 2008	16	32	16	30	5.8%	-0.03 [-0.28, 0.22]	
Debrock 2009	6	44	10	50	8.8%	-0.06 [-0.21, 0.09]	
Subtotal (95% CI)		537		525	100.0%	-0.08 [-0.13, -0.03]	•
Total events	95	(18%)	136	(26%)			
Heterogeneity: Chi ² = 2	2.51, df = 4	(P = 0)		· · · ·			
Test for overall effect:							
ndication Good Prog	nosis Pat	ient			N	I-H, Random, 95% CI	
Staessen 2008*	37	120	37	120	39.7%	0.00 [-0.12, 0.12]	-
Jansen 2008*	20	55	27	46	33.3%	-0.22 [-0.41, -0.03]	
Meyer 2009*	6	23	15	24	26.9%	-0.36 [-0.63, -0.10]	
Subtotal (95% CI)		198		190	100.0%	-0.17 [-0.39, 0.04]	
Total events	63	(32%)	79	(42%)			
Heterogeneity: Tau ² =	0.03; Chi ²	= 8.27.	df = 2 (P	= 0.02); l ² = 76%		
Test for overall effect:	a second second and		State and the second second				
ndication Repeated	Implantati	on Fail	ure			M-H, Fixed, 95% CI	
Blockeel 2008	15	72	26	67	100.0%	-0.18 [-0.33, -0.03]	
Subtotal (95% CI)		72	10	67	100.0%	-0.18 [-0.33, -0.03]	
Total events	15	(21%)	26	(39%)			
Heterogeneity: Not app		()	20	(
Test for overall effect:		P = 0.02	2)				-0.5 -0.25 0 0.25 (

Favors control Favors PGS

Mastenbroek et al, Human Reprod Update 2011;4:454

Intuitive appeal of PGS

- Additional information
 - Why would you NOT want that???
- Practically
 - Why would I want to transfer an aneuploid embryo?
- Theoretically:
 - Faster time to pregnancy
 - Decreased miscarriage rate

Pressure to perform PGT-A

- Natural appeal of new technology
 - -Must be better
- Pressure from consumers
- Pressure from registry
 - Need to optimize outcome of 1st embryo transfer

Gaps in Knowledge

- Biology of the pre-implantation human embryo
 - Rapid division, especially in the trophectoderm
 - Multi-nucleated cells, ?resemble sycytiotrophoblast
 - Predisposed to mosaicism, aneuploidy?
- True incidence of chromosomal abnormalities
 - -Aneuploidy, mosaicism
 - Correlation between trophectoderm and inner cell mass
- Embryo biopsy
 - Extent of damage to the embryo

What does screening with PGT-A tell us?

- Information about the genetic make-up of the embryo
 - Improved selection of the 1st embryo transfer
 - Increase in implantation rate of 1st embryo
- No improvement in embryo quality
 - No increase in cumulative pregnancy rate per aspiration
 - Any error/damage must cause decrease in cumulative pregnancy rate

Inherent down-sides of PGT-A

- Blastocyst culture
- Accuracy of testing
 - Error in testing: lab tests are not perfect
 - Inherent error: mosaicism (biopsy not representative) of rest of embryo
- Trauma from embryo biopsy
- Loss of potential live births
 - Discarding or damage to normal embryos

Blastocyst vs Cleavage stage transfer

- Issue is NOT settled
- Increased implantation rate with blastocyst
- No increase when frozen embryos considered
- No stratification by age
 - Difference between 32 yo and 42 yo
 - Is cleavage stage better for older women?

Glujovsky, Cochrane Database 2016:6, CD002118

Franasiak et al, Fertil Steril 2014;101;656

Incidence of euploidy (based on age and # of embryos)

	Egg Donor	<35	35-37	38-40	41-42	>42
1-3 embryos	59	56	47	36	23	14
4-6 embryos	62	55	48	36	24	16
7-10 embryos	64	57	49	37	23	15
>10 embryos	66	58	50	38	26	24
Total	64	57	49	37	24	16

Maternal age	Risk of Down' s Syndrome	Risk of all chromosomal abnormalities
33	1/416	1/208
34	1/333	1/151
35	1/250	1/132
36	1/192	1/105
37	1/149	1/83
38	1/115	1/65
39	1/89	1/53
40	1/69	1/40
41	1/53	1/31
42	1/41	1/25
43	1/31	1/19
44	1/25	1/15
45	1/19	1/12

Hook et al. JAMA 1983.

Accuracy of testing?

Comprehensive chromosome screening is highly predictive of the reproductive potential of human embryos: a prospective, blinded, nonselection study

Richard T. Scott Jr., M.D.,^{a,b} Kathleen Ferry, B.S.,^a Jing Su, M.S.,^a Xin Tao, M.S.,^a Katherine Scott, M.S.,^a and Nathan R. Treff, Ph.D.^{a,b}

NCT 01219517 NCT 01219504

Scott et al, Fertil Steril 2012;97:870

Predictive Value of CCS

- 255 embryos biopsied
 - -Average age = 34
 - 113 cleavage, 142 trophectoderm
 - 12 failed to amplify,
 - 11 nonconcurrent copy assignments (?)
 - -232 evaluable microarray results
 - 133 euploid
 - 55 (41.4%) of these resulted in normal children
 - 99 (42.7%) aneuploid
 - 4 (4%) normal children (96% negative predictive value)

Scott et al, Fertil Steril 2012;97:870

	Implantation	No implantation	
Euploid	55	78	133
Aneuploid	4	95	99
	59	173	232

41% of the "Euploid" group implanted

4% of the "Aneuploid" group implanted

Error rate: 10/99 (10%) "aneuploid" were actually euploid 4/59 (6.8%) implantations would have been discarded

Scott et al, Fertil Steril 2012;97:870

Trauma from Embryo Biopsy?

Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial

Richard T. Scott Jr., M.D.,^{a,b} Kathleen M. Upham, B.S.,^a Eric J. Forman, M.D.,^b Tian Zhao, M.S.,^a and Nathan R. Treff, Ph.D.^{a,b,c}

"Seminal Contribution" NCT 01219504

Scott et al, Fertil Steril 2013;100:624

- All patients < 35 yo
 - Good ovarian reserve
- ET within 3 hours of Bx
 - All 4AA 4BB
 - Without knowledge of ploidy
- Blastocysts (n=67)
 - No \downarrow in implantation rate
 - 54% vs 51%
 - 30/69 aneuploid (42.7%)
- Cleavage stage (n=46)
 - 39% \downarrow in implantation rate
 - 19 aneuploid (41.3%)
- Can these results be extrapolated to women > 40?

Scott et al, Fertil Steril 2013;100:624

What does a day 5 embryo look like?

"Buckyball"

- Naturally occurring C₆₀
 - 32 faces
 - 20 hexagons
 - 12 pentagons
- Trophectoderm with 64 cells
 - 2 cells/face
- Imagine removing 5 cells
 - Is this really NOT traumatic?

How many embryos do we lose?

- Best-case scenario
- Good prognosis patient
 - –Under 35
 - -Expected aneuploidy rate?
 - –Implantation rate with and without PGT-A?

Incidence of euploidy (based on age and # of embryos)

No. of day 5 embryos	Patient Age								
	<35		35-37		38-40		40+		
	Euploid	Patients	Euploid	Patients	Euploid	Patients	Euploid	Patients	
1-3 embryos	54%	29%	50%	33%	38%	44%	24%	56%	
4-6 embryos	57%	32%	47 %	35%	36%	34%	26%	28%	
7-9 embryos	55%	22%	49 %	20%	38%	14%	28%	11%	
10+ embryos	52%	17%	46 %	12%	35%	8%	28%	5%	

Ongoing pregnancy rate per blastocyst transfer

*Internal IGENOMIX data 2016 based on outcomes and 2015 SART data.

How many embryos do we lose?

- Typical good prognosis patient
 - -PGS testing
 - 40% aneuploidy
 - -50% implantation rate before testing
 - -65% implantation rate after testing

100 embryos

 \mathbf{O} ()()(()Ο () ()

100 embryos, 50% implantation rate

50 implant 50 no implant

50 implant 50 no implant

After PGS, 60 embryos left New implantation rate: 50/60 = 83.3%

50 implant 50 no implant

After PGS, 60 embryos left New implantation rate: 50/60 = 83.3%

Actual implantation rate is: 65% ≈ 40/60 Improvement over 50%

40 implant 10 no implant

After PGS, 60 embryos left New implantation rate: 50/60 = 83.3%

Actual implantation rate is: 65% ≈ 40/60 Improvement over 50%

40 implant 40 implant 10 (20%) lost 10 no implant

After PGS, 60 embryos left New implantation rate: 50/60 = 83.3%

Actual implantation rate is: 65% ≈ 40/60 Improvement over 50%

General principle

- When we remove from the cohort a sub-group which has a lower incidence of a given characteristic, the average of that characteristic in the remaining group must increase.
- Age
- Height
- Implantation rate

LOW PERFORMERS

AVERAGE PERFORMERS

HIGH PERFORMERS

Generalized Efficiency Equation

Embryo implantation (EI) must increase if we are removing lower quality embryos from the population EI (expected) = EI (untested) / (percent normal) Efficiency = EI (observed after testing) / EI (expected) % embryos lost = 1 - Efficiency

Generalized Efficiency Equation

- Previous example:
 - -50% (untested) / (60% normal) = 83.3% (expected)
 - -Efficiency = 65% (observed) / 83.3% (expected) = 0.80
 - -% embryos lost = 1 0.80 = 0.20

When is it OK to lose 20% of implantations?

- Specific reason for genetic diagnosis
- Excellent prognosis patient
 - More embryos than she needs

When is it NOT OK to lose 20%?

- Limited number of eggs
 - Fertility preservation patients
 - Patients over 40

What are actual "real life" implantation rates?

- SART CORS registry
- Query the database = "filter" function

				tcorsonline.com/rptCSF	R_PublicMultYear.aspx	?reportingYear	=2014	C	
ersion b	Calendar - A	INAUGURATI	Sign in to yo	Breast Canc	After Malfun	Shopping Ca	art Amaz	on.com	Translate
Osart	National Su	mmary Report			UNDERSTAND THI	S REPORT	PATIENT'S	OWN EGGS	DONOR
	Cumulative C	Dutcome Per Egg R	etrieval Cycle	Primary Outcome Pe	er Egg Retrieval Cyc	ele Subse	quent Outcon	ne (Frozen Cycl	es) Live
PATIENT'S OWN EGGS									

PRELIMINARY PRIMARY OUTCOME PER EGG RETRIEVAL CYCLE

•

	< 35	35 - 37	Age of woman 38 - 40	41 - 42
Number of cycle starts	42728	22675	22101	11899
Singletons	31.9 %	24.7 %	16.7 %	8.7 %
Twins	8.8 %	6.0 %	3.3 %	1.2 %
Triplets or more	0.2 %	0.1 %	0.1 %	0.0 %
Live Births	40.9 %	30.9 %	20.1 %	9.9 %
(Confidence Range)	(40.4 - 41.4)	(30.3 - 31.5)	(19.6 - 20.6)	(9.4 - 10.4)
Term	78.2 %	79.4 %	80.2 %	81.1 %
Pre-term	17.9 %	16.9 %	16.3 %	15.2 %
Very pre-term	3.9 %	3.7 %	3.5 %	3.7 %

lational Summary Repo

SR

mpletely re-designed from t sed emphasis on embryo cr atment burden to the patient d frozen embryo transfers. ed prognosis for your chanc

than reporting year cannot I pplied. To view this section

T	Filter	Report
---	--------	--------

Filters other than Reporting Year cannot be applied to the 'Cumulative Outcome Per Intended Egg Retrieval' and 'Live Birth Per Patient' sections. These sections will be hidden if a filter has been applied.

¢.

Reporting Year

2014 Cycle Type

All cycle types

Minimal stimulation

Natural cycle

Conventional stimulation

In vitro maturation

	nos	

All Diagnoses		\$
Additional Filters		
	INCLUDE Only	Exclude
First IVF		
eSET		
PGD / PGS		
Day 5/6 transfer		
Frozen egg		
Frozen embryo		
Gestational carrier		

s treated through IVF. the old reporting syst omes over time for an Technologies (ART).

ections. These section

Apply filter

Reset filter

Cancel

EGGS

 \times

DONOR B

			🗎 www.sar	tcorsonline.com/rptCS	R_PublicMultYear.aspx	?reportingYear	=2014	Ċ		
onversion b	Calendar - A	INAUGURATI	Sign in to yo	Breast Canc	After Malfun	Shopping Ca	rt	Amazon.com		Translate
Osa	rt National Su	National Summary Report UNDERSTAND THIS REPORT PATIENT'S OWN EGGS DONOR								
	Cumulative C	Dutcome Per Egg R	letrieval Cycle	Primary Outcome P	er Egg Retrieval Cyc	le Subsec	quent C	Outcome (Frozen C	Sycles	s) Liv

PATIENT'S OWN EGGS

FINAL PRIMARY OUTCOME PER EGG RETRIEVAL CYCLE

Age of woman < 35 35 - 37 38 - 40 41 - 42 Number of cycle starts 10048 2876 1194 316 Singletons 50.0 % 42.7 % 31.3 % 21.8 % Twins 0.8 % 0.5 % 0.1 % 0.9 % Triplets or more 0.0 % 0 % 0 % 0 % Live Births 50.8 % 43.1 % 31.4 % 22.8 % (Confidence Range) (49.8 - 51.8) (41.3 - 44.9) (28.8 - 34.0) (18.2 - 27.4) Term 89.1 % 88.7 % 86.7 % 77.8 % Pre-term 9.1 % 9.6 % 10.7 % 19.4 %

1.7 %

2.7 %

2.8 %

1.8 %

Very pre-term

National Summary Repo

CSR

Tot

ompletely re-designed from the ased emphasis on embryo cryeatment burden to the patient and frozen embryo transfers. N zed prognosis for your chanc

T	Filter	Report	
---	--------	--------	--

Filters other than Reporting Year cannot be applied to the 'Cumulative Outcome Per Intended Egg Retrieval' and 'Live Birth Per Patient' sections. These sections will be hidden if a filter has been applied.

٠

Reporting Year	
----------------	--

2014 Cycle Type

Minimal stimulation
Natural cycle
Conventional stimulation

All cycle types

Diagnosis		
All Diagnoses		\$
Additional Filters		
	Include Only	Exclude
First IVF		
eSET		
PGD / PGS		
Day 5/6 transfer		
Frozen egg		
Frozen embryo		
Gestational carrier		
ICSI		
Apply filter	Reset filter	Cancel

ew. n: 6123 s treated through

Eddo

 \times

DON

the old reporting omes over time f Technologies (A

			www.sartcorsonline.com/rptCSR_PublicMultYear.aspx?reportingYear=2014						
onversion b	Calendar - A	INAUGURATI	Sign in to yo	Breast Canc	After Malfun	Shopping Ca	rt Amazon.com		Translate
Sart National Summary Report				UNDERSTAND THIS REPORT			PATIENT'S OWN EG	GS	DONOR
	Cumulative Outcome Per Egg Retrieval Cycle			Primary Outcome Per Egg Retrieval Cycle		le Subseq	uent Outcome (Frozen	Cycle	s) Live

PATIENT'S OWN EGGS

FINAL PRIMARY OUTCOME PER EGG RETRIEVAL CYCLE

•

	< 35	Age of woman			
	< 30	35 - 37	38 - 40	41 - 42	
Number of cycle starts	2047	1311	1219	418	
Singletons	49.9 %	52.6 %	52.0 %	49.8 %	
Twins	0.8 %	0.5 %	0.3 %	2.2 %	
Triplets or more	0 %	0 %	0 %	0.2 %	
Live Births	50.7 %	53.1 %	52.3 %	52.2 %	
(Confidence Range)	(48.5 - 52.8)	(50.4 - 55.8)	(49.5 - 55.1)	(47.4 - 56.9)	
Term	88.1 %	90.9 %	88.6 %	89.0 %	
Pre-term	9.5 %	7.8 %	9.7 %	9.2 %	
Very pre-term	2.4 %	1.3 %	1.7 %	1.8 %	

Generalized Efficiency Equation

- "Real world" example:
 - -50% (untested) / (60% normal) = 83.3% (expected)
 - -Efficiency = 50% (observed) / 83.3% (expected) = 0.60
 - -% embryos lost = 1 0.60 = 0.40

Counseling patients about PGT-A

- PGT-A will provide information about the embryo
- PGT-A will likely increase implantation in 1st ET
- PGT-A will add cost
- You will lose 20% 40% of embryos that might have implanted
- Cumulative pregnancy rate will be decreased

Conclusions – PGT-A

- Useful:
 - Specific diagnosis, e.g. translocation, sex selection
 - Recurrent aneuploidy (RPL) (likely)
 - Age 36-39, with many blastocysts
- Unnecessary:
 - Young good prognosis patients (< 35 yo)
- Not worth it:
 - Limited number of eggs
 - Fertility preservation, women over 40

Incidence of Mosaicism

- Confined placental mosaicism
 - -1-2%
- ?Incidence in embryos
 - Up to 75% in cleavage stage
 - Up to 20% in blastocysts
- ?impact on implantation rates
- ?interpretation of PGS results

Challenges in PGT

- Biology of the pre-implantation human embryo
 - Rapid division, especially in the trophectoderm
 - Unique life form
- True incidence of chromosomal content
 - -Aneuploidy, mosaicism
 - Significance of trophectoderm aneuploidy
- Embryo biopsy
 - -Invasive

The first principle is that you must not fool yourself, and you are the easiest person to fool. ~Richard Feynman

QUOTESVALLEY.COM

Thank you