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OUTLINE

Etiologies of azoospermia

Overview of spermatogenesis
complexity

Genomic tools
Current efforts

Sperm epigenetics
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GENETIC CAUSES OF AZOOSPERMIA

302 NATURE January 31, 1959 vou s

The dq‘mm‘f/ 05 A CASE OF HUMAN INTERSEXUALITY HAVING A POSSIBLE

CLINICAL XXY SEX-DETERMINING MECHANISM
By PATRICIA A. JACOBS and Dr.J. A, STRONG
ENDOCRINOLOGY Medical Research Courz:rl Group for Research giheaGene?:I Effects ofT Radiation and Department for

Endocrine and Metabolic Diseases, Western General Hospital and University of Edinburgh
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necomastia, Aspermatogenesis
without A-Leydigism, and In-
creased Excretion of Follicle-
Stimulating Hormone'

Fig. 1. Mstaphase piate showing 47 chromosomes

Harry F. KLINEFELTER, JR.,> M.D.,
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FuLLer AvsrigHT, M.D.

From the Medical Service of the Massachusetts Gen-  Hum. Genet. 34, 119124 (1976)
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Original Investigations

~10-15% of NOA

Localization of Factors Controlling Spermatogenesis
in the Nonfluorescent Portion
of the Human Y Chromosome Long Arm

L. Tiepolo and Orsetta Zuffardi
Institute of General Biology, Medical Faculty, University of Pavia, Italy 2 1 2 2 Y d
eleted/

Y normal



RARE GENETIC CAUSES OF NOA
(CUMULATIVELY <5% OF CASES)

Kallmann Syndrome- few mutations
identified

Robertsonian franslocations

XX males

Point mutations/CNVs

— USP26, SOX3, TEX11, TEXT4, MEIOB, DNAHS,
DAZL, DAX-1, DMRTI eftc.



ETIOLOGIES OF MALE INFERTILITY

List of etiological factors involved in male factor infertility.

Congenital factors

-Anorchia

-Cryptorchidism

-Congenital Absence of Vas Deferens

-Genetic abnormalities (caryotype anomalies including Klinefelter syndrome; Y chromosome mirodeletions; Kallmann
syndrome, mutations in genes involved in Hypothalamus-pituitary-gonadal axis, Partial/Mild Androgen Insensitivity
syndrome)

Acquired factors )
~Testis trauma & Aneuploidy
-Testicular torsion

-Post-inflammatory forms (orchitis, epididymitis)

-Obstruction, subobstruction of proximal and/or distal urogenital tract
-Recurrent urogenital infections, prostatitis, prostatovesciculitis
-Exogenous factors (medications, cytotoxic drugs, irradiation, heat etc)

W AZF deletion

-Systemic diseases (liver cirrhosis, renal failure etc) Unknown
-Varicocele (depending on the grade)

-Surgeries that can damage vascularisation of the testes

-Erectile, ejaculatory dysfunction i Obstruction / @)
-Acquired hypogonadotrophic hypogonadism or endocrine factors 50 ther

dionathic form

-Unknown etiology (about 50%)
C. Krausz / Best Practice & Research Clinical Endocrinology & Metabolism 25 (2011) 271-285




EFFORTS TO CHARACTERIZE THE GENETICS
OF MALE INFERTILITY

GeneRe-sequencing?Development/Differentiation?  sperm@Functione
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SNP GENOME-WIDE ASSOCIATION STUDIES
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COMPLEXITY OF SPERMATOGENESIS

Location:
Cell Type:
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34% OF ALL GENES ARE EXPRESSED
IN THE TESTIS
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32% OF ALL PROTEINS ARE EXPRESSED
IN THE TESTIS

1098 2200

B Elevated in testis

M Expressed in all

B Mixed expression pattern
Not detected in testis

B Not detected in any tissue
7367

Human Protein Atlas

http://www.proteinatlas.org/humanproteome/testis



CHALLENGES

Multitude of potential loci

Genetically/phenotypically
heterogeneous disease

Limited sample sets

Challenges of functional validation



SOLUTIONS

Collaboration

Whole genome approaches capable
of detecting rare genomic variants

Development of custom analyfical tools

Application of powerful tools for in vitro
and in vivo validation



COLLABORATION: ’§ GEMINI

i Genetics of Male Infertility Initiative
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INCREASING ACCESSIBILITY TO LARGE-
SCALE SEQUENCING:

Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts

20012002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

$1K




GEMINI'S APPROACH

« Exome sequencing of 1000 NOA cases

« |dentity likely variants

« Functional validation in cell lines, animal
models, efc.



APPROACHES TO MAPPING DISEASE

VARIANTS
£} B .
= = 0
I

LINKAGE ASSOCIATION
ANALYSIS ANALYSIS

[

Vs.

N=1
ANALYSIS




N=1 ANALYSIS:

 What is the probability that a given
genetic variant identified in an infertile
man will be found in a healthy, fertile
populatione

* Analysis is conditional on the functional
effects of the genotypes.

» PSAP=population sampling
probability

iy \

Wilfert, et al. Nature Genetics, 2016 iy
Amy Wilfert



VARIANT ANNOTATION

|Identifying variants that are damaging to gene function

_
m
}

= Alternative allele

|
[]

= Reference allele

] II

CADD (Kircher, et al. 2014 Nature
Genetics)

Impact of variant on gene function

Benign Damaging




SIGNIFICANCE TESTING

Disease population
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Non-disease population



THE MOTIVATING CASE:
30 YR OLD NOA MAN WITH UPD2
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GENETICS RESULTS: HUMAN KNOCKOUTS
IN GEMINI

“Loss-of-function” mutations can be easily recognized
(e.g. stop gains, splice mutations)

Provide a clear expectation of functional impact

Can be used to infer biological function, and drug
targets

3,436 knockout genes reported to date (EXAC,
deCODE, East London Genes project and HGMD)

1 enormous
: potential
of reverse
genetics
i 1 | to expand
= MUTATIONS d bl L the field of
Dawn of the Human Knockout Project JEBUILIEY
human

genetics

Nature Reviews Genetics | Published online 2 May 2017: doi:10.1038/nrg.2017.35



GEMINI SAMPLES

Sample collection ongoing

3650 men recruited (Nov b _ y 4 ODenmark -
o Wash®  * Portugal,
1642 cases | G A
* 2008 controls £
9
Australia

Phase I sequencing

Center Cases Controls

Total, 890 samples: PRT 296 78
AUS 11 0

506 analyzed DEN o1 0

384 in analysis WashU 24 6

Total 422 84




OTHER KNOCKOUT NOA CASES

10 KO genes - novel candidates in testis
biology/infertility

1. Function mostly unknown

2. No knockouts observed previously for 5 genes
(Not in all known 3436 knockout genes)

AXDNDI Highest in testis, Nothing known

MAGEB4 Highest in testis, published stoploss in Turkish
azoospermia brothers

PNLDC Highest in testis, Processing of piRNAs

SPIDR DNA double strand break repair

ZNF512B MicroRNA regulation?



VALIDATION:



WHY VALIDATE?

Based on current GEMINI analysis

* Rare likely disease-causing mutations in 236 genes
* 92% of genes are case-specific

Unlikely to find multiple carriers of mutations in
these genes

* Validation screening of top genes in model organisms



FUNCTIONAL VALIDATION OF TOP GENES

KO/CRISPR of 2 novel testis genes

GEMINI collaborator Moira O’Brian (Monash
University, Australia)

Mouse

ChlamydomonasPotential ciliary gene CCDC112 (Susan Dutcher; WashU)

C. elegans DNA double-strand break repair gene RADS50(Tim Schedl; WashU)

Drosophila  Screening via testis-specific RNA1 (Conrad lab, WashU)
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SPERM EPIGENETICS

« Associations with male infertility

« What impacts sperm epigeneticse
— Age
— Smoking

» Effects on offspringe



SPERM PROTAMINATION AND EPIGENETICS




THE “POISED FOR EMBRYOGENESIS™ SPERM
EPIGENOME

Most of the sperm genome (>90%) is silenced by
protfamine replacement of histones.

Key embryogenesis genes are not protaminated,
and are epigenetically “poised’” for rapid
activation in embryogenesis.

These marks are largely set in the spermatogonial
stem cells.

This unigue poising is conserved in nature (likely
means its very important).

The pattern suggests a role of sperm contributing to

embryogeneSiS From Hammoud et al., 2009;
’ Carrell et al., 2013



FREQUENCY OF ABNORMAL METHYLATION IN PATIENTS WITH
POOR IVF EMBRYOGENESIS HISTORY

— Association testing across all loci:

- 6.7% of loci were abnormally methylated (Bonferronip < 0.01)
— Imprinted loci:

—  43.6% of DMR CpGs were abnormally methylated

DNA methyiaton
Poenkn

Aston et al. Fertility & Sterility 97, 285-292 (2012)



INITIAL STUDIES
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Aberrant sperm DNA methylation
predicts male fertility status and
embryo quality

Kenneth I. Aston, Ph.D.,* Phiip J. Uren, Ph.D. " Timothy G. Jenkins, Ph.D.,* Alan Horsager, Ph.D.,¢
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Object male fertlty st ing in vitro fertilization (IVF) therapy can be predicted
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Decreased fecundity and sperm DNA
methylation patterns
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Obijective: To evaluate the relationship between epigenetic patterns in sperm and fecundity.

Design: Prospecti

Setting: Academic andrology and in vitro fertilization laboratory.

Patient(s): th -

uples unable o achieve a pregnancy within 12 months.

Intervention(s): None.

Main Outcome Measure(): Genomewide ascssment o ifferential sperm DNA methylation and standardsemen anaysis
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volume
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he mainstay of male infertility
T diagnosis is the standard semen

analysis. With the exception of
fication of criteria for morphologic
grading, semen analysis has changed
very lttle over the past several decades
Numerous studies have evaluated the
prognostic value of the various semen
arameters evaluated by the standard
analysis (1-3). Except for severely
diminished sperm count or motilty, the
predictive value of semen analysis for

1388
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ecreased fecundity is a com-
D s iy

associations with genetic, bio-
logic, and lifestyle factors ~that
contribute to the disease (1-6). This
complexity is further compounded by
the fact that this disease ultimately
affects @ couple, such that the

etiology of reproductive dysfunction
can be found in the female or male
alone, or potentially in both partners.
The frequency of infertiity is varied
worldwide (peaking at approximately
30% of couples in some regions), but
is thought to impact an average of
89%-12% of all reproductive-aged cou-
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ples globally (7-10). There are many

causes of inferiity or subfertility,
but often the etiology of individual
cases cannot be identified.

A common source of subfertilty or
infertility in human couples is male
subfertility or decreased fecundity. It

believed reproductive

dysfunction is an independent cause

reduced fecundity in approximately
30% of subfertile couples (11). In
another 20% of couples, abnormal
male reproductive function contributes
toa couple’s inability to conceive but is
not independently ~ responsible (11).
What constitutes male subfertility is
difficult o elucidate, as there are
many fertility-related diagnoses as-
signed to men based on abnormalities
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SUPPORTING STUDIES

Example studies examining the correlation between global DNA methylation levels; columns indicate phenotypic
associations identified in the study.

Sperm Morph. / Fertility Pregnancy DNA fragmentation
Count Motil. Outcome

Benchaib et al., Hum. Reprod. 2004

Houshdaran et al., PLoS ONE, 2007 Yes Yes Yes - =
Urdinguio et al., Hum. Reprod. 2015 -- - Yes = =
Montjean et al., Andrology, 2015 Yes Yes - - Yes

Other studies, particularly more recent ones, have looked at epigenetic disruptions at
specific genes. The focus is often on imprinted loci.

Embryo dev.  preg. / miscarriage

Marques et al., Mol. Hum. H19, MEST, IGF2 Yes

Reprod., 2008

Wu et al., PLoS ONE, 2010 MTHFR Yes Yes

Hammoud et al., Fertil. Steril., LIT1, MEST, SNRPN, PLAGL1, PEG3, H19, and IGF2 Yes Yes

2010

El Hajj et al., Sex Dev., 2011 H19, GTL2, LIT1, MEST, NESPAS, PEG3, SNRPN; ALU, Yes Yes
LINEL

Ankolkar et al., Fertil. Steril., 2012 H19 Yes

Xu et al., Andrologia, 2016 MEST, GNAS, H19, FAMS0B, LINE-1, P16 Yes Yes

Poplinski 2010 (Int. J. Andro.) IGF2/H19 ICR1, MEST Yes Yes

Urdinguio et al., Hum. Reprod. ALU repeats, 2752 CpGs (~1800 genes; ~60 Yes

2015 imprinted)

Kuhtz et al., Epigenetics, 2014 GTL2 Yes

Xu et al., Biol. Reprod., 2013 Pebpl Yes



SUPPORTING STUDIES

Example studies examining the correlation between global DNA methylation levels; columns indicate phenotypic
associations identified in the study.

Sperm Morph. / Fertility Pregnancy DNA fragmentation
Count Motil. Outcome

Benchaib et al., Hum. Reprod. 2004

Houshdaran et al., PLoS ONE, 2007 Yes Yes Yes — -

Urdinguio et al., Hum. Reprod. 2015 - - Yes = -

Montjean et al., Andrology, 2015 Yes Yes = - Yes Co n c I u S i 0 n S :
Other studies, particularly more recent ones, have looked at epigenetic disruptions at 2 commercial assays

specific genes. The focus is often on imprinted loci.

Growing rapidly

Margques et al., Mol. Hum. H19, MEST, IGF2 Yes Yes H
i Expensive ($450 US)
Wu et al., PLoS ONE, 2010 MTHFR Yes Yes . .
Hammoud et al., Fertil. Steril., LIT1, MEST, SNRPN, PLAGL1, PEG3, H19, and IGF2 Yes Yes G 0 o d P re d I Ct Ive Powe r
2010
El Hajj et al., Sex Dev, 2011 H19, GTL2, LIT1, MEST, NESPAS, PEG3, SNRPN; ALU, Yes Yes |_| ke |y to b ecome
LINE1
Ankolkar et al,, Fertil, Steril, 2012 H19 Yes standard
Xu et al., Andrologia, 2016 MEST, GNAS, H19, FAMS50B, LINE-1, P16 Yes Yes
Poplinski 2010 (Int. J. Andro.) IGF2/H19 ICR1, MEST Yes Yes
Urdinguio et al., Hum. Reprod. ALU repeats, 2752 CpGs (~1800 genes; ~60 Yes
2015 imprinted)
Kuhtz et al., Epigenetics, 2014 GTL2 Yes

Xu et al., Biol. Reprod., 2013 Pebp1l Yes



Male infertility

1IN 10 COUPLES WOMEN AND MEN ARE
ARE INFERTILE, EQUALLY AFFECTED

THE SEMEN 15% 22%

ANALYSIS the sensitivity of of infertility is of
(STAN DARD OF the semen analysis unknown cause
CARE) PREDICTS for predicting (unexplained
MALE INEERTILITY infertility,, infertility),
VERYFOOREY 50% A

of IVF treatment
cycles fail, even
[UI IVF when using IVF-

cSl, Ty




Summary

Semen Analysis

(based on concentration threshold
of 13.5 X 108/ ml, the best
performing parameter threshold in

14.8%

SENSITIVITY
Percentage of
suspected infertile

96.1%

SPECIFICITY
Percentage of known
fertile men identified

this study,.) men classified as as fertile
infertile
DNA Methylation Profile 84 .39, 02 1%
for Fertility
DNA Methylation Profile
Y 50.0% 94.0%

for embryo quality

Affected genes show function in sperm adhesion, chemotaxis and
acrosome reaction. Functional defects likely to be missed by

traditional semen analysis. Provides information to guide treatment.

41



HERITABILITY OF ENVIRONMENTAL
EXPOSURES

* Overkalix Sweden Study: Grandsons of pre-pubertal
boys exposed to famine periods lived longer than those
exposed to feast periods. When controlled for
socioeconomic factors, difference was 32 years.

* ALSPAC Study (England): Smoking during prepubertal
period resulted in increased risk of obesity in offspring.

« Dutch Famine effects on pregnant mothers in early
pregnancy resulted in lower methylation of IGF gene in
offspring 60 years later.

« Agouti Mouse Study: Pregnant agouti mice fed vitamin
B.

« Fruitfly exposure 1o geldanamycin causes bristly growths
on eyes of offspring for many generations.



SPERM EPIGENETICS AND

e e e S

Manikkam et al.,
PLoS ONE, 2013

Dong et al., 2016

Skinner et al., BMC
Med., 2013

Tsaprouni et al.,
2014

Xu et al., Biol.
Reprod., 2013

Miao et al.,
Andrology, 2014

Susiarjo et al.,
Endocrin. 2015

musculus

Homo
sapiens

Rattus
norvegicus

Homo
sapiens
Mus
musculus

Homo
sapiens

Mus
musculus

Endocrine disrupters
(plastics) during

primordial germ cell dev.

Cigarette Smoking

Dichlorodiphenyltrichlor
oethane (DDT)

Cigarette smoking
Cigarette smoking
Bisphenol A (BPA)

exposure.

Bisphenol A (BPA)
exposure.

197 Diff. methylated sperm DNA regions Pubertal abnormalities, testis disease, obesity,
ovarian disease

Hypomethylation of H19 ICR Infertility, oligozoospermia, asthenozoospermia,
teratozoospermia

F3 generation sperm epimutations; genes  F3 generation (great grand-offspring) had over
associated with DMRs previously shown to  50% of males and females develop obesity.

be associated with obesity

Pebp1l diff. methylation Not assessed

Aberrant LINE1 repeat sperm methylation  Not assessed

overexpression of the imprinted Igf2 gene;  higher body fat and perturbed glucose
increased DNA methylation of 1gf2 ICR. homeostasis in F1 and F2 male offspring

Donkin et al., Cell
Mat., 2015

Denham et al.,
Epigenomics, 2015

Palmer et al., Am. J.
Physiol. Endocrinol.

Metab., 2012

Homo
sapiens

Homo
sapiens

Mus
musculus

Gastric bypass-induced

weight loss

Exercise intervention

Diet and exercise changes Not assessed

Genes involved in regulation of Rapid and extreme weight loss
appetite and weight, including FTO
(also implicated in male infertility)

Global changes in sperm DNA Not reported
methylation; inc. genes related to
schizophrenia and Parkinson's disease

improved sperm motility, morphology; reduced
sperm DNA damage, reactive oxygen species;
increased sperm binding
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Age-Associated Sperm DNA Methylation Alterations:
Possible Implications in Offspring Disease Susceptibility costas

Timothy G. Jenkins', Kenneth I. Aston’, Christian Pflueger?, Bradley R. Cairns>>*, Douglas T. Carrell"*>*
1 Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America, 2 Department of
Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America, 3 Howard Hughes Medical Insttute,
Chevy Chase, Maryland, United States of America, 4 Department of Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America,
5 Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America

Biological Factors

Abstract

Recent evidence demonstrates a role for patemal aging on offspring disease susceptibility. It is well established that various
neuropsychiatric disorders (schizophreni m, etc), trinucleotide expansion associated diseases (myotonic dystrophy,
T HE e G T T T S AT e s B RO T UG ()
epidemiological evidence that these alterations are more common in offspring sired by older fathers, in most cases the
mechanisms that drive these processes are unclear. However, it is commonly believed that epigenetics, and specifically DNA
methylation alterations, likely play a role. In this study we have investigated the impact of aging on DNA methylation in
mature human sperm. Using a methylation array approach we evaluated changes to sperm DNA methylation patterns in 17
fertle donors by comparing the sperm methylome of 2 samples collected from each individual 9-19 years apart. With this
st il 128 e it e and with age and 8 regions that

with age. A ive subset of these alterations have been confirmed in an
mdependent cohort. A total of 117 genes are associated with these regions of methylation alterations (promoter or gene

o
D I e-l- body). Intriguingly, a portion of the age-related changes in sperm DNA methylation are located at genes previously

associated with schizophrenia and bipolar disorder. While our data does not establish a causative relationship, it does raise
the possibility that the age-associated methylation of the candidate genes that we observe in sperm might contribute to
the increased incidence of neuropsychiatric and other disorders in the offspring of older males. However, further study is
required to determine whether, and to what extent, a causative relationship exists.

Citaion: Jenkins 16, Aston K. Puege C, o B8 Carel T (2014) AgeAssocated Sperm DINA Methylaton Aleratons: Possible mpications i Offpring
Disease Susceptibilty. PLoS Genet 10(7): €1004458. doi:10.1371/journal pgen. 10

Editor: John M. Greally, Albert Einstein College of Medicine, United States of America
Received November 21, 2013; Accepted May 9, 2014; Published July 10, 2014

Copyright: © 2014 Jenkins et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cret

L]
rvepavanrm of the manuscript.
~ ‘Competing Interests: The authors have declared that no competing interests exist.

* Email: Brad C (BRO); 10

- S m O ki n g Introduction

epigenome is not only well suited to facilitate mature gamete
function but is also competent to contribute to events in cmbryonic

The effects of advanced paternal age have only recently become development. It has been cstablished that even through the
of interest to the scientific community as a whole. This interest has qramatic nuclear protein remodeling that occurs in the developing
likely ariscn as a result of recent studis that suggest an association sperm, involving the replacement of histone proteins with
with increased incidence of discases and in the tamines, some are retained [12]. Importanty,

— ( O O offspring of older fathers. Specifically, offspring sired by older igones are retained at promoters of important genomic loci
fahers have been shown to have increased incidence of for development, suggesting that the sperm epigenome is poised

order, scl

neuropsychiatric disorders (autism, bipolar izophte- 1o play a role in embryogenesis [12]. In addition, recent reports

Cancer Therapies

Medications
Air Pollution

Socio-economic stress
Toxic waste exposure

nia, etc.) [1-3], trinucleotide repeat associated diseases (myotonic
dystrophy, spinocerebellar atisia, Huntington’s disease, ctc.) [4-7],
as well as some forms of cancer [8-11]. Though these are
intriguing data, we know very litde about the ctiology of the
increased frequency of diseascs in the offspring of older fathers.
Among the most likely contributing factors 1o this phenomenon
are epigenetic alterations in the sperm that can be passed on to the
offipring,

These studics are in striking contrast to the previously held
dogma that the mature sperm arc responsible only for the
safe delivery of the paternal DN,
investigation has come mounting evidence that the sperm

PLOS Genetics | www.plosgenetics.org

suggest that hypometylated regions with high CpG density
also appear to drive nuclcosome retention E

methylation matks in the sperm have been identified that likely
contribute o embryonic development as well [12,14]. These data
strongly support the hypothesis that the sperm epigenome is not
only well suited to facilitate mature sperm function, but that it also
contributes to events beyond fertilization

Looking past fertilization and embryogenesis, sperm appear (o
contribute to events manifesting later in lfe. The remarkable claim
that sperm, independent of gene mutation, may be capable of
affecting phenotype in the offspring was initially proposed as a
result of large retrospective epidemiological studies observing

July 2014 | Volume 10 | Issue 7 | €1004458



RISING AGE OF FATHERS AND
NCREASED INCIDENCE OF
NEUROPSYCHIATRIC DISORDERS

Schizophrenia Autism Social Behaviors

a. All studies a Spline model: Univariate autism rates

0.0005
5 25-29 30-34 35-39 40-44 45-49 250
Paternal Age

Ag 0.0000

1 1 ]

[—e— Males —=—Females Bath] 0 T 3 O a4 e e

mal age at birth of the chi
Miller et al., 2011 Gardener et al., 2009

Smith et al., 2009



LOCI AFFECTED BY ADVANCING
MALE AGE

* Hypermethylation * Hypomethylation
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GENES/DISEASES ASSOCIATED WITH ALTERED
METHYLATION DURING MALE AGING

« All diseases that are associated with at least 3 of the genes altered

with age were included in our frequency analysis

9% Of Genes Associated With Disease
e e o

p < 0.005

Schizoph

Disease Association

p < 0.001

"

Bipolar

Hypertension

iabetes Me!

llitus

i Background

“ Age Associated

Jenkins et al., 2014



CONFIRMATION OF FINDINGS

¢ TO rg eTe d. Comparison of MiSeq and Array
SequenC|ng N Array data [ MiSeq confirmation
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ey
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findings
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* Lasso and Elastic Net regularization

— 10-fold cross validation

on a dataset with 329 samples from 450k array data:
* R application — gimnet

— Training a predictive model with 147 regions of interest
— Utilizing a linear regression machine learning platform

Technical details:

AGING CALCULATOR?

BUILDING A MODEL
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FINAL MODEL

* Includes only the heaviest weighted
51 regions and corrects for array
pbatch.

50 60
| |

Predicted age
40
L

r2 = 0.8809
Avg % accuracy = 93.7%

I I I I I
20 30 40 50 60

Jenkins et al., 2018



IS THERE A POTENTIAL UTILITY?

Density

density.default(x = sma$Control.It35)

—— Never Smokers

Smokers

—— Heavy Smokers

-0.4

-0.2

I
0.0

Difference

0.2

0.4

-Could be used in the future

to predict risk to offspring
A bit far off — much
work still required

-Potential use to track
interventions which may
affect germ lineage in
patients with accelerated
aging patterns
-Potentially a more
powerful motivator
-Improved compliance?



SPERM DNA METHYLATION
ASSOCIATED WITH CIGARE

DIFFERENCES

« Methylation arrays on 78 men who

smoke vs /8 never smokers
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MOUSE STUDIES
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Aim

2
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Smoking causes changes in DNAme in mouse sperm

Changes in DNAme is more dramatic in recently smoke exposed animals.

Sperm collected 3 days after smoke exposure Sperm collected 50 days after smoke exposure
ol g -
@ Differentially Methylated Regions N "
susl
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Follow up recovery experiments...

Compartment occupled by germ cells

Samples collected at various times post exposure:
1. 3 days

2. 28 days (0.8 cycles)

3. 50 days (1.4 cycles)

4. 100 days (3 cycles)

5 170 days (5 cycles)

Stage M B E R E G M R E G M R E G M = Maturation
R = Release
E = Elongation

Lumen

Crypt

Meiosis 11
- PL = Preleptotenc
Spermatids L= Leptotene

£ = Eypotene

Intercellular

@—' P = Pachytene
Meiosis | p= Diplotene

@
S < !J' o o Spermatocytes
_/ r‘@ ]:;r oL OL_/ T‘Q @jlﬂ@ _/ ;rc — IN'eht Junctions
.r‘"@ B — -
0o oo 0o elseo@ @J,@]'%l@féL 0l6[@ ©1@)_|®|@] spermatozonia
J |

30 40 50 (days)
Time (days)
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