Future of Genetic testing in fertility

Sarthak S Sawarkar CooperGenomics University of Kent

CONTENTS

- 1. Introduction to genetic testing
- 2. PGD for gene defects
- 3. PGS for aneuploidy
- 4. PGS version 2
- 5. Mosaicism
- 6. Non-Invasive PGS
- 7. Beyond the embryo: Endometrial Receptivity

Why do we need genetic testing in fertility at all?

- In vitro fertilization has completely transformed the field of human infertility
- Assisted reproductive technologies (ART) are available throughout the world
- Scientific developments and refinements in clinical and laboratory technologies have led to IVF evolving into a efficient, safe and accessible medical technique

Why do we need genetic testing at all?

- Greater than 50% cleavage and blastocyst stage embryos produced invitro are found to be chromosomally abnormal or aneuploid
- Aneuploidy numbers reach as high as 70% in women over 42 years of age
- Prevention of inherited diseases in future generations

% of Aneuploid chromosomes in Complex Abnormal embryos

Role of Genetic testing in improving implantation outcomes

- Low success of artificial reproductive treatments is observed in embryos that are detected with numerical chromosomal abnormalities
- Aneuploidy clearly has detrimental effects on efficacy of ART
- Up to 70% of chromosomal abnormalities are often observed in cases which result in spontaneous abortions
- Selection of normal (euploid) embryos to transfer during IVF to improve the rates of success for the procedure is necessary

PGD for Gene Defects

Complexity of the human genome

- 3.500 million pairs of bases
- 88 million (2.5%) are different single nucleotide
 polymorphisms (SNPs) they make us different
 from one another
- 3% are coding genes (about 35,000 genes)
- 97% is "junk" DNA with regulatory activity over genes

The Burden Of Genetic Disease

- >6000 single gene disorders
- Combined incidence: 1/300 births (U.S.)
- Everyone carries 14-18 severe recessive mutations that can cause genetic conditions
- Carriers may not have a family history or symptoms of a genetic disease
- Hence, carrier screening is the only way to determine carrier status

- 2. Berry, R.J., Buehler, J.W., Strauss, L.T., Hogue, C.J., Smith, J.C., 1987. Birth weight-specific infant mortality due to congenital anomalies, 1960 and 1980. Public Health Rep. 102, 171–181.
- 3. Costa, T., Scriver, C.R., Childs, B., 1985. The effect of Mendelian disease on human health: a measurement. Am. J. Med. Genet. 21, 231–242.
- 4. Guttmacher, A.E., Collins, F.S., 2002. Genomic medicine: a primer. N. Engl. J. Med. 347, 1512–1520.
- 5. Kingsmore, S., 2012. Comprehensive carrier screening and molecular diagnostic testing for recessive childhood diseases. PLoS Curr. May 2:e4f9877ab8ffa9.
- 6. Kumar, P., Radhakrishnan, J., Chowdhary, M.A., Giampietro, P.F., 2001. Prevalence and patterns of presentation of genetic disorders in a pediatric emergency department. Mayo Clin. Proc. 76, 777–783.
- 7. Scriver, C.R., Neal J/2 Gaginur, R., Clow, A., 1973. The frequency of genetic disease and congenital malformation among patients in a pediatric hospital. Can. Med. Assoc. J. 108, 1111–1115.
- 8. Srinivasan, B.S./Eváns, E.A., Flannick, J., Patterson, A.S., Chang, C.C., Pham, T., Young, S., Kaushal, A., Lee, J., Jacobson, J.L., Patrizio P., 2010. A universal carrier test for the long tail of Mendelian disease. Reprod Biomed Online. Oct;21(4):537-51.

^{1.} Bell, C.J., Dinwiddie, D.L., Miller, N.A., Hateley, S.L., Ganusova, E.E., Mudge, J., Langley, R.J., Zhang, L., Lee, C.C., Schilkey, F.D., Sheth, V., Woodward, J.E., Peckham, H.E., Schroth, G.P., Kim, R.W., Kingsmore, S.F., 2011. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med. Jan 12;3(65):65ra4

Start with Carrier Screening

- Recommended for people who are planning a family or early in pregnancy, even without family history of genetic disease
- 80% children with conditions have no family history of disease
- Includes about 314 conditions categorized based on impact, inheritance, and/or availability of treatment
- About 3.5% of all couples are carriers of genetic disease

These diseases have a significant effect on life expectancy and quality of life.

Moderate Impact 🔾

These diseases typically don't affect life expectancy but can affect quality of life. Treatment can lessen the impact of these diseases, especially with early intervention.

Treatment Benefits O

X-Linked \bigcirc

These diseases are passed down by female carriers. Carriers may have symptoms.

PGD for gene disorders

We can do PGD for any monogenic disease provided the mutation is known

Disease tested: Acetil Co Oxidase type I defficiency, Adrenoleucodistrophy, Alpha-thalassemia, Alport syndrome, Autosomal Dominant Polycystic Kidney Disease (ADPKD), Autosomal Recesive Polycystic Kidney Disease (ARPKD), Beta-thalassemia, Branchio-Oto-Renal syndrome (BOR), BRCA1 breast cancer predisposition, BRCA2 breast cancer predisposition, CanavanCharcot-Marie-Tooth type IA (CMT1a), Choroideremia, Congenital adrenal hyperplasia (CAH), Congenital neutropenia, Connexin 26 hearing loss, Cystic fibrosis, Duchenne/Becker Muscular Dystrophy (DMD), Ectrodactyly, Ectodermal dysplasia, and Cleft lip/palate syndrome (EEC1), Fabry Disease, Familial adenomatous poliposis coli (FAP), Familial dysautonomia, Familial intrahepatic cholestasis 2, Fanconi anemia, Fragile site mental retardation, Gangliosidosis type 1 (GM1), Gaucher disease, Glomuvenous malformations (GVM), Glycogen-storage disease type I (GSD1), Glycosylation type 1C, Hemoglobin SC disease, Hemophilia A, Hemophilia B, Hereditary nonpolyposis colon cancer (HNPCC), Hereditary pancreatitis, HLA matching Huntington disease, Hurler syndrome, Hypophosphatasia, Incontinential pigmenti, Krabbe disease (Globoid cell leukodystrophy), Long QT syndrome, Marfan syndrome, Meckle gruber, Metachromatic leukodystrophy (MLD), Methylmalonic aciduria cblC type (MMACHC), Myotonic Dystrophy 1, Myotubular myopathy, Neurofibromatosis 1, Neurofibromatosis 2, Niemann-Pick Disease, Noonan syndrome, Oculocutaneous albinism 1 (OCA1), Ornithine carbamoyltransferase deficiency (OTC), Osteogenesis Imperfecta 1, Rapp Hodgkin ectodermal dysplasia, Retinitis pigmentosa, Retinoblastoma, Sickle Cell Anemia, Smith-Lemli-Opitz syndrome (SLOS), Spinal bulbar muscular atrophy (SBMA), Spinal Muscular Atrophy Type 1 (SMA1), Tay Sachs, Tuberous sclerosis 1 (TSC1), Tuberous sclerosis 2 (TSC2), Von Hippel-Lindau Syndrome (vHL), X-linked dominant Charcot–Marie–Tooth (CMTX), etc..... (see review Gutierrez et al. (2008))

PGD procedures performed

Cases performed: >10,000

Disease genes tested: 778

Top 10 diseases:

Cystic fibrosis Fragile X Huntington disease Sickle cell anemia Spinal Muscular atrophy Neurofibromatosis type 1 Beta Thalassemia Breast cancer (BRCA1, BRCA2) Myotonic dystrophy Polycystic Kidney Disease (PKD1)

Faster work-up time for PGD: Karyomapping

Thousands of polymorphisms on each chromosomes Each chromosome (region) has a unique DNA fingerprint

Advantages of Karyomapping

	Karyomapping	PCR
Work-up time	2-4 weeks	8-12 weeks
Embryos correctly diagnosed	99.6%	96.8%
Clinical error rate	0%	Lab dependent
Aneuploidy meiotic	Yes	No
Aneuploidy mitotic	Νο	Νο
Parental origin / fingerprint	Yes	No
Affected by ADO	No	Yes (3.6%)

Konstantinidis et al (2015) RBO and Reprogenetics data

What is next: De novo mutations

- De novo mutations occur during gametogenesis and post-zygotically
- De novo mutations contribute to almost every known genetic disorder
- Increased paternal age known to contribute towards de novo mutations
- Autism, Schizophrenia, Familial adenomatous polyposis, Multiple endocrine neoplasia 2B, retinoblastoma, Schinzel-Giedion syndrome, CFTR, Bohring-Opitz syndrome

Kong, A., et al., *Rate of de novo mutations and the importance of father/'s age to disease risk*. Nature, 2012. **488**(7412): p. 471-475. Sanders, S., et al., *De novo* mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 2012. 485(7397):237-41

Role of de novo mutations in pregnancy and outcomes

- No evidence exists regarding de novo mutations (SNVs and CNVs) in IVF generated embryos
- Increased load of Copy Number Variations seem to have an increasing role in ASD, Schizophrenia, Bipolar Disorder etc.
- Sequencing based methods capable of detecting both SNV/CNV and aneuploidy simultaneously could be the future of genetic testing

Possible limitations and challenges

- Large number of variants will be detected
- Would require immense automation of variant curation and additional variant curators
- Genetic counselling would be big challenge: What is the new normal?

PGS for aneuploidy

Pre-implantation genetic screening

- Aneuploidy increase is the major cause of reduced fertility with increasing maternal age
- One can use genetic material from embryos to determine ploidy of the embryo
- PGS can test abnormal number of chromosomes and disorders associated with it like Down's syndrome, Edward's syndrome, Trisomy 21 and etc.

Waves of technology

Evolution of PGS techniques

PGS data from Reprogenetics US, (*) annualized

Preimplantation Genetics Screening (PGS)

PGS Version 2

Blastocyst biopsy Comprehensive chromosome screening

Biopsy Techniques- Cleavage stage biopsy

- Cleavage stage biopsy involves obtaining genetic material for PGS by performing biopsy on cleavage stage embryos on day-3 postfertilization
- However recently it has been replaced by day- 5 blastocyst biopsy
- Mosaicism is one of the typical problems that occur during the screening of cleavage stage embryos for chromosomal anomalies

Biopsy Techniques- Blastocyst biopsy

- The most prevalent option nowadays for obtaining genetic material from the embryo
- Trophectoderm biopsy obtains multiple cells for carrying out PGD/PGS. This leads to an overall improved accuracy of the test

Evolution of biopsy techniques: About 100% of biopsies in US are blastocyst

Blastocyst biopsy: Advantages

Advantages:

- More DNA: fewer no results
- Fewer mosaics (21%) than day 3 (33%)
- Reduced impact of embryo biopsy *
- Less embryos to process
- Facilitates single embryo transfer

Risks:

- Every center biopsies differently: Some variations are detrimental
- Manipulator dependent

Comparison of PGS platforms

	% embryos	FISH	aCGH	NGS
Labs Performing Test		100s	180	5
Total Independent Data Signals*		11	2,700	700,000
Resolution in Mb		arm	6Mb	3Mb
Misdiagnosis aneuploides (a-f)		7%	2%	0%
Unbalanced translocations (g)	2%	custom	yes	yes
Partial aneuploidies	5%	no	yes	yes
Polyploidy	2%	yes	no	yes
Mosaicism (h, i)	20%	20%	4%	20%
Miscarriage rate (j, k)		10-20%	13%	11%

a Gutierrez-Mateo et al (2011) Fertil Steril, b Scott et al. (2012), c Treff et al. (2012) Fertil Steril 97:819–24, dGood Start Genetics: unpublished 7 misdiagnoses of 265 samples; e Kung et al. (2015) Reprod Biomed Online, , f Wells et al. (2014) J Med Genet, g Yeobah et al. (2015) ASRM, h Greco et al (2016) NEJM, i Tormasi et al (2015) PGDIS, ASRM. J Rodriguez-Purata et al. (2016) JARG; k Friedenthal et al. (2017) ESHRE * 24M reads per run, 24₂₇ samples per run, 30% reads lost = 700,000 reads per sample

Targeted Next Generation Sequencing

Targeted Next Generation Sequencing (NGS)

Targeted NGS

No WGA. Instead defined pieces of the genome are amplified and sequenced

Targeted Next generation sequencing (NGS)

Normal (2 copies)

Trisomy (3 copies)

- Targeted strategies are generally of lower resolution
- However, they have a couple of key advantages: ٠

Guaranteed coverage of specified sequences (genes or polymorphisms)

Lower costs and higher throughput

Next Generation Sequencing

Whole genome amplification based

Protocol used for NGS

Abnormality rates by NGS :Data from >100,000 embryos

	Egg donor	<35	35-37	38-40	41-42	>42
Normal	59%	53%	44%	31%	19%	14%
Mosaic	16%	18%	17%	13%	10%	8%
Aneuploid (± mosaic)	18%	20%	28%	38%	41%	33%
Complex (*)	7%	8%	10%	17%	28%	44%
Polyploid	1%	1%	1%	1%	1%	1%

- Mosaics are MITOTIC and therefore do not increase with age
- Mosaics + Aneuploid and Mosaic show constant rates through age

N = **103,405 embryos**. Reprogenetics and Genesis Genetics data to 1/2017 * Complex: >2 full abnormalities

Validation of NGS

	Original Analysis method	Reanalysis method	Sample	Confirmed Euploid	Confirmed abnormal	TOTAL
Kung et al. 2015 (Reprogenetics)	aCGH	NGS	Same biopsy	44/44	108/108	152/152
Fiorentino et al. 2014	aCGH	NGS	Same biopsy	67/67	141/141	208/208
Wells et al. 2014 (Reprogenetics)	aCGH	NGS	Separate biopsy	13/13	28/28	41/41
Total				100% Sensitivity	100% Specificity	0% Error rate

Criteria for classification of samples

Observation	Categorization
Zero Aneuploid Chro	Normal/Euploid
1 or 2 Aneuploid Chro	Aneuploid
1 Aneuploid and 1 Mosaic Chro	Aneuploid
≥3 Chromosomal Abnormalities	Complex Abnormal
Up to 20-80% abnormal cells	Mosaic
80% and greater abnormal cells	Aneuploid
20% and lesser abnormal cells	Euploid

Comparison between NGS and aCGH: by Type of Abnormality

	Rea			
Original (NGS)	Euploid	Aneuploid	Segmental	Ref
Euploid	196	0	0	1,2
Aneuploid	0	222	0	1,2
Mosaic	16	4	0	2
Polyploid	6	4	0	2
Segmental Translocation	0	0	69	3

(1) Ribustello et al. 2016, PGDIS, (2) Ribustello (2015) ESHRE (3) Bauckman (2016) ESHRE 6/8/2018

NGS advantages

Higher dynamic range than other techniques allows:

- Detection of **triploidy** 69,XYY and 69,XXY
- Detection of **mosaics** (20-80% range of abnormal cells or 1/5)
- **Higher resolution** than other techniques (1.5Mb)

Higher dynamic range, Less noise than aCGH

Mosacism

Mosaicism

- Chromosomal mosaicism is the presence of two or more cytogenetically distinct cell lines
- Unlike aneuploidy (meiotic origin), mosaicism caused by mitotic errors occurring after fertilization
- Mosaicism derived from : chromosome non-disjunction, anaphase lagging and endoreduplication

Higher dynamic range allows NGS to detect mosaics

Mosaics: a third category

aCGH	hr-NGS	impact		
Normal (61%)	Normal (43%)	100% concordance		
	Mosaic (18%)	Improved selection against low implantation, high miscarriage risk embryos	21%	
Abnormal (39%)	Mosaic (3%)	some chance of making a baby		
	Abnormal (36%)	100% concordance		

PGDIS, COGEN Recommendations

- Report <20% as normal and >80% as abnormal (resolution limit)
- **High priority** mosaics: those with **<40% abnormal cells**
- Low priority mosaics: chaotic mosaics or those with >40% abnormal cells
- Low priority mosaics: with chromosomes X, Y, 13, 18, 21 (live born viability)
 with chromosomes 14, 15 (risk of UPD)

- with chromosomes 2, 7, 16 (intrauterine growth retardation

But there is **no evidence** that mosaics at blastocyst level have the same impact as mosaics in first trimester

Next frontier in PGS : Non Invasive

Challenges to conventional PGS

- Requirement of highly skilled personnel for polar body/ embryo biopsy
- Biopsy requires purchase and maintenance of a laser
- Time consuming and costly
- Potentially increases the risk to the embryo and might decrease the overall efficacy of PGT

ARTICLE Genomic DNA in human blastocoele fluid S Palini ^{a,*,1}, L Galluzzi ^{b,1}, S De Stefani ^a, M Bianchi ^b, D Wells ^c, M Magnani ^b, C Bulletti ^a ^a NF Unit, 'Cervesi' Hospital Cattolica, 47841 Cattolica (Rn), Italy; ^b Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', 61029 Urbino (PU), Italy; ^c University of Oxford, Institute of Reproductive Sciences, Oxford Business Park North, Oxford, United Kingdom ^{*} Corresponding author. *E-mall address:* simonepalini@yahoo.it (S Palini). ¹ These authors contributed equally to this work.

Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization

Juanjuan Xu^{a.1}, Rui Fang^{b.1}, Li Chen^{a.1}, Daozhen Chen^b, Jian-Ping Xiao^b, Weimin Yang^b, Honghua Wang^b, Xiaoqing Song^b, Ting Ma^c, Shiping Bo^c, Chong Shi^c, Jun Ren^c, Lei Huang^{d,e,f,g}, Li-Yi Cai^{b,2}, Bing Yao^{a,2}, X. Sunney Xie^{d,g,h,2}, and Sijia Lu^{c,2}

Non-invasive preimplantation genetic screening using array comparative genomic hybridization on spent culture media: a proof-of-concept pilot study

Michael Feichtinger ^{a,b}, Enrico Vaccari ^a, Luca Carli ^a, Elisabeth Wallner ^a, Ulrike Mädel ^a, Katharina Figl ^a, Simone Palini ^c, Wilfried Feichtinger ^{a,*}

Sources of DNA for NI-PGS: Blastocoel fluid and spent culture media

- Blastocoel fluid present in the blastocyst cavity, 120-144 hours post fertilisation
- Media collected after embryo in culture till cleavage or blastocyst stage
- Both sources of extruded DNA and proteins by embryo
- Potential source of biomarkers for embryo viability
- If successful, these would be less intrusive than embryo biopsy
- Aim: To explore blastocoel fluid and spent media as a potential source of NI-PGT

Initial hypothesis and challenges for NI-PGS assay development

- DNA is likely to be degraded
 - Highly fragmented DNA is difficult to amplify using standard methods
 - Can we successfully amplify DNA from spent culture medium/blastocoel?
- Is the DNA similar to circulating cfDNA found in blood?
 - cfDNA is around ~160bp
 - Source of cell free DNA in blastocoel fluid and spent culture media?
 - Apoptotic cells? \rightarrow fragmentation of DNA into nucleosome-sized fragments
 - Necrotic cells? \rightarrow random fragmentation; variable DNA fragment sizes

Summary of some published results

Published study	Year	Journal	Method	Number of samples	Amplification rate	Ploidy concordance rate
Non-invasive preimplantation genetic screening using array comparative genomic hybridization on spent culture media: a proof-of-concept pilot study	2017	RBMO	Sureplex amplification +aCGH	22 spent media samples after blastocyst culture compared to PB results; SM collected after ssisted hatching	18/22 = 81.8%	13/18 (72.2%)
Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization	2016	PNAS	Malbac + Ngs	42 spent media samples	42/42 = 100%	Euploidy: 21/25= 84%; Aneuploidy: 15/17=88.2%
Non-invasive preimplantation genetic screening of human blastocysts	2017	Conference abstract ASRM-Fert Ster	Sureplex + NGS	25 spent media samples	25/25 = 100%	overall: 85% (75/20) with respect to TE biopsy
Monash University	2017	Conference abstract ASRM-Fert Ster	DOPlify + NGS	178 spent media samples	94% amplification	for day4 to day5/6 culture: 95%; for day3 to day5/6 culture: 65.4%

Summary of our results

- Spent culture media seems to be a better source for cell-free embryonic DNA as compared to blastocoel fluid
- Preliminary data analysis demonstrates our in-house modified method to be a superior amplification strategy for spent media samples as compared to existing WGA methods (Sureplex, MDA)
- Spent media can be potentially used as a source of DNA for non-invasive PGT, however extensive clinical validation is necessary to determine its efficacy.
- If successful, this can increase patient access to PGT and might be more cost effective compared to the current PGT techniques available.

Beyond the embryo

Endometrial receptivity

Embryo Implantation

Key process for the establishment of a successful pregnancy

- Complex: apposition
 - adhesion
 - invasion
- Crucial: dialogue between embryo and endometrium
 - implantation-competent blastocyst
 - receptive endometrium

Synchrony between embryo and endometrium

Window of Implantation (WOI)

Evaluation of Endometrial Receptivity

Enables identification of a personalised WOI and personalised embryo transfer

- Histologic evaluation¹
- Evaluation of biochemical markers²
- Analysis of gene expression³

Identification of transcriptomic signature specific to the WOI

Development of accurat diagnostic tools

Scientific data

Studies reporting on accuracy and treatment outcomes

- High accuracy in receptivity status assignment
- Displaced WOI in >25% of RIF patients
- Personal embryo transfer results in improved IVF outcomes

The accuracy and reproducibility of the endometrial receptivity array is superior to histology as a diagnostic method for endometrial receptivity

Patricia Díaz-Gimeno, Ph.D.,^{a,b} Maria Ruiz-Alonso, Ph.D.,^c David Blesa, Ph.D.,^c Nuria Bosch, M.D.,^d José A. Martínez-Conejero, Ph.D.,^c Pilar Alamá, M.D.,^d Nicolás Garrido, Ph.D.,^{b,d} Antonio Pellicer, M.D.,^{a,b,c,d} and Carlos Simón, M.D.^{a,b,c,d}

^a Fundación IVI, Instituto Universitario Instituto Valenciano de Infertilidad, University of Valencia; ^b Instituto de Investigación Sanitraia, Hospital Clínico Universitario de Valencia; ^c IVIOMICS; and ^d Instituto Valenciano de Infertilidad Valencia, Valencia, Spain

What a difference two days make: "personalized" embryo transfer (pET) paradigm: A case report and pilot study

M. Ruiz-Alonso¹, N. Galindo², A. Pellicer³, and C. Simón^{1,3,4,*}

¹IVIOMICS, Parc Cientific Valencia University, Paterna, Valencia, Spain ²IVI Alicante, Alicante, Spain ²Fundación Instituto Valenciano de Infertilidad (FIVI), Department of Obstetrics and Gynecology, School of Medicine, Valencia University and Instituto University, Stanford, IAA, Valencia, Spain ²Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA O-113 ER map: a new comprehensive and reliable endometrial receptivity test

J.A. Horcajadas Almansa¹, M. Enciso², J. Sarasa², J.P. Carrascosa³, P.A. Martínez-Ortiz⁴, J. Aizpurua⁴, S. Munné⁵ ¹Universidad Pablo de Olavide, Genetics, Sevilla, Spain ²iGLS, Genetics Department, Alicante, Spain ³CABD, Genetics, Sevilla, Spain ⁴IVF Spain, Reproductive Medicine, Alicante, Spain ⁵Reprogenetics, Research, Livingston, NJ, USA

Personalised scheduling of embryo transfer at the moment of highest endometrial receptivity according to ER Map[®] test significantly improves clinical outcomes

<u>J. Sarasa</u>[†], J. Aizpurua², I. Jurado[†], B. Rodriguez-Estrada[†], M.C. Garcia-Poyo[†], A.B. Climent³, P. Martínez-Ortiz³, M. Enciso[†]

¹iGLS, Genetics, Alicante, Spain

²IVF Spain, Reproductive Medicine, Alicante, Spain

³IVF Spain, Statistics, Alicante, Spain

The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure

Maria Ruiz-Alonso, M.Sc.,^b David Blesa, Ph.D.,^{a,b} Patricia Díaz-Gimeno, Ph.D.,^{a,c} Eva Gómez, M.Sc.,^a Manuel Fernández-Sánchez, M.D.,^d Francisco Carranza, M.D.,^d Joan Carrera, M.D.,^e Felip Vilella, Ph.D.,^a Antonio Pellicer, M.D., Ph.D.,^{a,b} and Carlos Simón, M.D., Ph.D.^{b,b}

^a Fundación Instituto Valenciano de Infertilidad, and Instituto Universitario IV/Incliva, Valencia University, Valencia; ^b lviomics, Paterna; ^c Computational Medicine Institute, Centro de Investigación Principe Felipe, Valencia; ^d Valenciano de Infertilidad Sevilla, Seville; and ^e Clinica Girona Unidad de Reproducción Humana, Girona, Spain

ER Map allow the reliable determination of the window of implantation in infertile women

J.A. Horcajadas, M. Enciso, J. Sarasa, J.P. Carrascosa, P. Martinez, J. Aizpurua, S. Munne

Advantages of ER Testing based on gene expression

Endometrial receptivity testing based on gene expression...

- Provides objective molecular diagnosis test
- Enables personal embryo transfer
- Shows high accuracy and reproducibility
- Provides evidence of a frequently displaced WOI in RIF patients
- Provides an effective strategy to improve clinical outcomes in RIF patients

ACKNOWLEDGEMENTS

Scientists

Katharina Spath, PhD (UK) Dhruti Babariya, PhD (UK) Josh Blazek, PhD (US) Mike Large, PhD (US) Santiago Munné, PhD (US) Mark Hughes, MD, PhD (US) Jacques Cohen, PhD (US) Tomas Escudero, MSc (US) Ryan Subaran, PhD (US) Pere Colls, PhD (US) Tony Gordon, PhD (UK) Lia Ribustello, MSc (US) Katie Bauckman, MSc (US) Sneha Patel, MS (US)

Bioinformatics, VC scientists

Arun Manoharan, PhD (US) Avinash Shanmugan, PhD (US) Eric Proffitt (US) Shrutii Sarda, PhD (US)

Genetic Counselors (R&D)

Amy Jordan, MS Erin Armenti, MS Rachael Cabey, MS Dina Goldberg-Strassler, MS Ushtavaity Canteenwalla, MS

Reprogenetics[™] Recombine[™] Genesis Genetics[™]

Some Control Control

Reprogenetics[™] Recombine[™] Genesis Genetics[™]