Eeva Test: The GPS of Time-Lapse

eva^m

2015 ABB CRB Workshop

Shehua Shen, MD, ELD (ABB) Vice President, Medical & Scientific Affairs, Auxogyn

Challenges of Time Lapse

1. Time Lapse = Lots of information

- True
- False
- Don't know
- 2. Lots of information = useful information
 - True
 - False
 - Don't know
- 3. Do you know what information Time Lapse gives to you?
 - Yes
 - No
 - Maybe

Abnormal Cleavage

- AC1 and AC2 embryos are often selected for Day 3 transfer (28.6%)
- AC embryos are often good quality (46.9% 6-10 cells, ≤10% frag)
- Morphology is unable to detect AC embryos
- Implantation Rate: 3.7%

Athayde Wirka , et al., Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development, Fertility & Sterility. 101(6):1637-48, (2014)

Abnormal Syngamy

Normal Syngamy	Abnormal Syngamy (A	AS)	Contr 68%	With AS ol 25%	3
			Blast Rate	Impl Rate	
		Control (n=443)	45%	18%	
		With AS (n=163)	22%	0%	
		p-value	<0.0001	0.08	

- AS is associated with poorer developmental potential
- Many AS embryos have good morphology on Day 3 and Day 5 and are selected for transfer or freezing
- AS may be related to centrosomes from abnormal sperm

Athayde Wirka , et al., Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development, Fertility & Sterility. 101(6):1637-48, (2014)

Abnormal First Cytokinesis (A1^{cyt})

Oolemma Ruffling For	P1	irrows	Contro 69%	With A1 ^{cyt} 31%	
		Blast Rate	Impl Rate		
	Control (n=443)	45%	17%		
	With A1 ^{cyt} (n=196)	22%	6%		
	p-value	<0.0001	0.1		

- A1^{cyt} phenotype is associated with poorer developmental potential
- Previously research has correlated 1st cytokinesis timing (P1) to developmental competence ^[1]
- Combining A1^{cyt} phenotype and P1 timing may more finely discriminate embryos for de-selection

Athayde Wirka, et al., Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development, *Fertility & Sterility*. 101(6):1637-48, (2014). [1] Wong et al. *Nature Biotechnology* (2010)

Biological Parameters

Time-lapse observations:

- Abnormal cleavage
- Reverse cleavage
- Multinucleation
- Fragmentation dynamics
- Blastocyst collapsing and reexpansion

Time-lapse markers

. . .

More Challenges of Time Lapse

- 1. Do you know what "algorithm" means and what "statistical modeling" is?
 - Yes
 - No
 - Don't know
- 2. How much time do you have to grade embryos and prepare for embryo transfer for each case, on an average basis?
 - 15 minutes
 - 30 minutes
 - Unlimited time

Time-lapse parameters: Just watching is NOT enough

Two Examples:

- 1. We need to watch and see
- 2. We need to *see beyond* what human vision allows

Example 1: We need to watch and *see*

Chabris & Simons, Harvard University/University of Illinois, Urbana-Champaign, 1999 MKT 3202_A

Example 2: We need to see beyond

Barton & Winawer, Nature 2005

Example 2: We need to see beyond

Barton & Winawer, Nature 2005

The Eeva Test

Founded on Science. Dedicated to your Success

nature biotechnology

Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage

Connie C Wong^{1,2,7}, Kevin E Loewke^{1–3,6,7}, Nancy L Bossert⁴, Barry Behr², Christopher J De Jonge⁴, Thomas M Baer⁵ & Renee A Reijo Pera^{1,2}

Top 10 Medical Breakthroughs of 2010

TOP 10 MEDICAL BREAKTHROUGHS 8. Predicting IVF Success

By Alice Park | Thursday, Dec. 09, 2010

For couples choosing to start a family with in vitro fertilization (IVF), the odds are not always in their favor. The procedure, even under the best circumstances, has a 30% chance of resulting in a live birth on average. So it was welcome news indeed when Stanford University researchers reported on a new method for selecting the strongest embryos, which would most likely result in a pregnancy and live birth.

Inside the Eeva System...

Day 3 Demo 1: 38 year old with 6 embryos

Well	D3 cell number	D3 symmetry	D3 fragmentation (%)		Fate
A1	6	Moderate	1-10		
A2	8	Symmetric	1-10		
B1	6	Moderate	1-10		
B2	6	Moderate	1-10		
C1	8	Symmetric	1-10		
C2	8	Symmetric	1-10		

Desired SET

Day 3 Demo 1: 38 year old with 6 embryos

Well	D3 cell number	D3 symmetry	D3 frag	A1	¥B1	Yo	(v _{D1}	
A1	6	Moderate		A2	-≪ _{B2}	-	2	D2	
A2	8	Symmetric		1	-	(. (<u> </u>	
B1	6	Moderate		. (. (
B2	6	Moderate		A3	< ◆ B3	te:	3	03	
C1	8	Symmetric							
C2	8	Symmetric		Auxogyn Eev	a		2013-05	-13-092933-705	1

Desired SET

Day 3 Demo 1: 38 year old with 6 embryos

Well	D3 cell number	D3 symmetry	D3 fragmentation (%)	Eeva Result	Notes	Fate
A1	6	Moderate	1-10	High		
A2	8	Symmetric	1-10	Low	AC2	
B1	6	Moderate	1-10	Low		
B2	6	Moderate	1-10	Low		
C1	8	Symmetric	1-10	High		Transferred
C2	8	Symmetric	1-10	Low	AC1	

Outcome: Clinical pregnancy (singleton)

Day 3 Demo 4: 26 year old with 11 embryos

Well	D3 cell number	D3 symmetry	D3 fragmentation (%)		Fate
A1	8	Symmetric	1-10		
A2	8	Symmetric	1-10		
A3	8	Symmetric	1-10		
B1	Morula	Symmetric	1-10		
B2	Morula	Symmetric	1-10		
B3	8	Symmetric	1-10		
C1	8	Symmetric	1-10		
C2	8	Symmetric	1-10		
C3	8	Symmetric	1-10		
D1	8	Symmetric	1-10		
D2	6	Symmetric	1-10		

Desired DET

Day 3 Demo 4: 26 year old with 11 embryos

Well	D3 cell number	D3 symmetry	D	A1 B1	C1 D1	
A1	8	Symmetric			\square	
A2	8	Symmetric				
A3	8	Symmetric		A2 B2	¥C2 ¥02	4
B1	Morula	Symmetric				
B2	Morula	Symmetric				
B3	8	Symmetric				
C1	8	Symmetric		A3		-
C2	8	Symmetric				
C3	8	Symmetric				
D1	8	Symmetric				
D2	6	Symmetric		Auxogyn Eeva	2014-04-10-072140-209	1

Day 3 Demo 4: 26 year old with 11 embryos

Well	D3 cell number	D3 symmetry	D3 fragmentation (%)	Eeva Result	Notes	Fate
A1	8	Symmetric	1-10	High		Transferred
A2	8	Symmetric	1-10	High		Transferred
A3	8	Symmetric	1-10	Low		
B1	Morula	Symmetric	1-10	Low		
B2	Morula	Symmetric	1-10	Low	RC	
B3	8	Symmetric	1-10	High		
C1	8	Symmetric	1-10	Low		
C2	8	Symmetric	1-10	Low	RC	
C3	8	Symmetric	1-10	Low		
D1	8	Symmetric	1-10	Low		
D2	6	Symmetric	1-10	Low		

Outcome: Clinical pregnancy (twins)

Scientific foundation of the Eeva Test

¹Wong et al. Nature Biotechnology (2010), ² Meseguer et al. Human Reprod (2011), ³ Hashimoto et al. Fertility & Sterility (2012), ⁴ Cruz et al. RBM Online (2012), ⁵ Chavez et al. Nature Communications (2012)

Summary of Early Predictive Time-Lapse Markers

Chen et al. Fertility & Sterility, (2013)

Ongoing Effort to Continue Scientific Discovery

- Publications and abstracts continue to increase
- Impact of Eeva Test on clinical pregnancy and implantation is under study

Publications

Clinical Validation and Research
Using the Eeva™ Test adjunctively to traditional day 3 morphology is informative for consistent embryo assessment within a panel of embryologists with diverse experience
N.P. Diamona, Y. Suraj, E.J. Bernike, K. rang, M.J.Angle, J.L. Lambe Steinmiller, K. Watterson, K. Athayoe Wirka, K.A. Chen, S. Shen, Journal of Assisted Reproduction and Genetics, 2014
Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development
K. Athayde Wirka, A.A. Chen, J. Conaghan, K. Ivani, M. Gvakharia, B. Behr, V. Suraj, L. Tan, S. Shen, Fertility and Sterility, 2014. http://www.fertstert.org/article/S0015-0282(14)00203-9/abstract
Improving embryo selection using computer-automated time-lapse imaging plus day 3 morphology: results from a prospective multi- center trial
J. Conaghan, A.A. Chen, S.P. Willman, K.Ivani, P.E. Chenette, R.Boostanfar, V.L.Baker, G.D. Adamson, M.E. Abusief, M.Gvakharia, K.E. Loewke, S. Shen, Fertility, 8 Sterify, 100(2): 412-9, 2013.
http://www.iertstercorg/anticle/sours-soza2(15)00517-77abstract
Automated time-lapse analysis in adjunctive use with morphology is highly informative in allowing diverse embryologists to select embryos with high developmental potential
M.P. Diamond, L. Tan, J. Conaghan, K. Ivani, A. Le, A.A. Chen, S. Shen, V. Suraj, European Society of Human Reproduction and Embryology (ESHRE) Annual Meeting 2014, Jun 29-Jul 2, 2014, Munich, Germany
The use of innovative, intelligent software and non-invasive embryo imaging to predict blastocyst formation by day 3
H. Marden, J. Conaghan, K. Ivani, R. Gregotre, C. Kingsland, S. Troup British Fertling Sociely: Association of Clinical Embryologists (BFS/ACE) Annual Meeting 2013, Jan 3-5, 2013, Liverpool, UK Awarded the "Prize Paper" for Clinical Achievement
Improved embryo selection accuracy using cell division characteristics defined by time-lapse and automated image analysis
A.A. Chen, K. Ivani, J. Conaghan, M. Gvakharia, A. Le, S. Shen
American Society for Reproductive Medicine (ASRM) Annual Meeting 2012, October 20-24, 2012, San Diego, California, Fertility & Sterility Vol.98(3):517.
Prediction of embryo viability using validated cell division time intervals measured by time-lapse imaging
A.A. Chen, K.E. Loewke, S.P. Willman, P.E. Chenette, R. Boostanfar, S. Shen
American Society for Reproductive Medicine (ASRM) Annual Meeting 2012, October 20-24, 2012, San Diego, California, Fertility & Sterility Vol.98(3):S31.
Early cell cycle durations detected by time-lapse imaging predicts embryo developmental potential
S. Shen, A.A. Chen, S.P. Willman, P.E. Chenette, R. Boostanfar, V.L. Baker, M. Abusief, V. Suraj, K. Wirka, K. Loewke European Society of Human Reproduction and Embryology (ESHRE) Annual Meeting 2012, July 1-4, 2012, Istanbul, Turkey, Human Reproduction Vol.27(2):II22.
Research to Advance Science
Computer-automated time-lapse analysis test results correlate to clinical pregnancy and embryo implantation: a prospective, blinded, multi-center study

Refer to Auxogyn.com for complete list of publications/abstracts

http://www.auxogyn.com/clinical-innovation/reproductive-science-publications/

How the Eeva System Works

Introducing the **Eeva[™] System**

Simple & Easy to Use Designed to fit into your lab workflow

Load embryos into Eeva Dish

Confirm Alignment

Analysis Begins

Day 1 & Day 2 Imaging

Easy 3 Reagin & Erosnatede

Allegionese and	Clinic Name : IVF CLINIC Healthcare Profes HENRY LEE MD Eeva Imaging Star	ssional: rt: 2014-10-06, 08:0	10	Patient Nan Patient DOE Patient ID: Eeva Scope Accession # Eeva Result Generated	ne: KLAIN, GIA 1: 1976-03-01 0123456789 #: 03 : 00X-TST-001 d: 2014-10-08, 02:00	
			(.	va Information		1
	Well#	P2 Normal Range: Shrs 20min – 11hrs 28min	P3 Normal Ranges Ohrs Omin – 1hrs 44min	Eeva Result	Notes	1
	A1	05h 15m	00h 30m	LOW		1
	B1	02h 5m	02h 35m	LOW		
	cı	11h 00m	00h 20m	HIGH		
	D1	01h 30m	05h 50m	LOW		
A2	10h 35	im i	00h 15m	HIGH		
	B2	03h 15m	01h 25m	LOW		
	C2	10h 15m	00h 10m	HIGH		
	D2	12h 55m	00h 10m	LOW		
	A3	00h 45m	00h 30m	LOW		1
	83	10h 25m	01h 05m	HIGH		
	С3	01h 20m	02h 40m	LOW		1
		00h 45m	00h 20m	LOW		1

Review Eeva Test Results adjunctively to morphology

Select with Confidence

FDA Clearance Power to Predict required a Unique Path to Market

- The Eeva[™] System was cleared through the FDA de novo process in June 2014
 - Pathway for innovative, low to moderate risk devices
 - More rigorous requirements
 - First device of its kind with prognostic assessment

Eeva System	Other Time Lapse Systems
FDA De Novo Clearance	510(k) Clearance
Assisted Reproduction Embryo Image Assessment System	Assisted Reproduction Accessories

While the Eeva Test can be used for any patient, here are some situations where its value is maximized:

The Eeva Test is:

- 1. Best used when **embryo selection** is needed: patients who may have multiple good quality embryos on the day of embryo transfer (e.g. good responders, donor eggs, etc.)
- 2. A tool to permit the embryologist to select with confidence when an e**SET** is planned.
- **3. Prognostic** not diagnostic. It has limited use in poor responders and patients with poor embryo quality.
- 4. In all patients, the Eeva Test must be used as an **adjunct to morphology**, not as a substitute for a trained embryologist.

The future of the Eeva Test

Biological Parameters Are Only the Start

Statistical Modeling for Multiple Parameters

Benefits of Automation + Computer Vision

Biological Parameters

Statistical

Modeling

Automation reduces the need for manual measurements

Automation + Computer Vision

Clinical Validation

Clinical Validation

Biological Parameters

Statistical Modeling

Automation + Computer Vision

Clinical Validation

Data Requirements for Developing a Predictive Model:

- 1. Prospectively collected
- 2. Multi-clinic and diverse, for generalizable and consistent results
- 3. Separate training & test datasets

Ongoing Development of the Eeva Test

An Analogy for Eeva

The Future : The Eeva Network

- Users in the network provide information in real-time
- Users receive real-time data analysis within their clinic and compared to all clinics
- Selection algorithms will be continuously updated to optimize results
- Better outcomes for members of the network

Path to Clinics and Patients

nature biotechnology

Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage

Connie C Wong^{1,3,7}, Kevin E Loewke^{1-3,6,7}, Nancy L Bossert⁴, Barry Behr², Christopher J De Jonge⁴, Thomas M Baer⁵ & Rence A Reijo Pera^{1,2} Eeva Today (April 2015)

- 8 countries
- >45 clinics
- >4,000 patients tested
- >22,000 embryos imaged
- >35 publications

Select with Confidence

